uM-FPU V3 IDE
User Manual

(N

b=

Micromega Corporation

Introduction

The uM-FPU V3 Integrated Development Environment (IDE) software provides a set of easy-to-use tools for
developing applications using the uM-FPU V3 floating point coprocessor. The IDE runs on Windows XP, Vista and
Windows 7, and provides support for compiling, debugging, and programming the uM-FPU V3 floating point
COPIocessor.

Main Features

Compiling
ebuilt-in code editor for entering symbol definitions and math expressions
ecompiler generates code customized to the selected microcontroller
epre-defined code generators included for most microcontrollers
etarget description files can be defined by the user for customized code generation
ecompiler code and assembler code can be mixed to support all uM-FPU V3 instructions
eoutput code can be copied to the microcontroller program

Debugging
einstruction tracing
econtents of all FPU registers can be displayed in various formats
ebreakpoints and single-step execution
econditional breakpoints using auto-step capability
*symbol definitions from compiler used by instruction trace and register display
enumeric conversion tool for 32-bit floating point and integer values

Programming Flash Memory
ebuilt-in programmer for storing user-defined functions in Flash memory
ememory map display for Flash memory and EEPROM memory
egraphic interface for setting parameter bytes stored in Flash
esupport for setting alternate clock speeds

Further Information

The following documents are also available:
uM-FPU V3 Datasheet provides hardware details and specifications
uM-FPU V3 Instruction Reference provides detailed descriptions of each instruction

Check the Micromega website at www.micromegacorp.com for up-to-date information.

Micromega Corporation 1 Revised 2012-12-19

http://www.micromegacorp.com
http://www.micromegacorp.com
http://www.micromegacorp.com

Installing and Connecting

Table of Contents

[T T o LT Ty { o) o 1 1
1Y = T T =7 1L 0 == S 1
(077341} RS 1
7= o 18 o o | o T 1
Programming Flash MEMOIYuuuuuuuiiiiiiiiiiiiiiiiii bbb aaaee 1
Further INformation «c-ccoeeorioiiimiiiciire i s s s s s s s sse s s s s s nssmsansassassmssmssmsanssnsanssnssnsansnnsansnnsnnnns 1
B = o) (=30 Y 2070 Y 1 1= 1 1 = 2
Installing the UM-FPU V3 IDE SOftwareccccooi s 5
Connecting 10 the UM-FPU V3 Chip «-eerroerrrrrrmiiiinneir st nsn s s s s s 5
{07073 g = T3 1o TN D =T = o' 5
Overview of UM-FPU V3 IDE USer INTerfate -t-tcrorrrrrreieieieieisisssararararasasasasasasasasasssasassssssssssssssnsass 6
LS 0 10107 = A" AT o [0 .7 RS 6
(@ 1T 1101 AT/ T T Lo SR 7
DEDUG WINAOW e 8
[l U g Yoo Yo AT a Yo [0 PP PP 9
LS =Y 0 = I @ A1 Yo [12N 9
Tutorial 1: Compiling FPU Code ettt s 10
Compiling UM-FPU V3 COAE «--uuieeeiiiiiiiiiiii e 10
Starting the UM-FPU V3 IDEcvuieiiiie ittt 11
Entering @ SImple EQUALION «...eiovveieeiiiiiice e 11
DY 1 Vo T V=T 4= N 12
o=V T o)L= = €)=Y o] A 12
(07 1oV = 1T o T = o U L= 12
Copying Code t0 your Main Programcc.ceeeiiuiiiieiiiiiec e 13
{0 T g Talo IR g =Y o oo | - Lo PSRN 15
Calculating Diameter, Circumference and ArEa -«ccuureeiiiuiieieeiiiie et e e 15
Copy Revised Code to the Main Program ..., 16
Running the ReViSed Programcuo oot 18
SaVviNg the SOUICE FlE «-uvveieiiiiiie it 18
Tutorial 2: Debugging FPU COde ... rmueiimmmeiiiiis i s s s s s e 19
Making the CONNECTHION «..uuuuuuiiiiiii bbb e aaes 19
Tracing INSTUCHIONS +vvvvnnieiii e e 19
BreakpOiNts v veeu et 20
SINGIE StEPPING «+vnnnrereeriieit e e 21
Tutorial 3: Programming FPU Flash MemOrY ..ttt 22
Making the CONNECTHION «..uuuuuuiiiiiii bbb e aaes 22
(D7) T T1 Vo I8 0 et o) = 22
(0711 1T Yo I V13 Ted o) 1= 22
Modifying the Code for FUNCHONS «..vvvvriiiiiiiiiiiiiecce e 23
Compile and Review the FUNCHONS «.vvvvvveiiiieii s 24
o] 0) 1T IR (4= Y0 V13 To] o) o - 24
LU T g Talo IR g =Y o oo | - Lo S RN 25
Reference Guide: Menus and Dialogs ----:scsrrrrmmmmmmmsniniiirinisss s s s 28
1 =31/ = 0 1 PP 28
e [T 1Y, =Y o 1 PP 28
DEDUG IMEBNU «eenieiiie e 30
[l g Yoo T3 1Y 1= T PRSP 31
B Yo £ 1Y =Y o L PP 33
HEID IMIBNU ettt e e 35
Reference Guide: Compiler ... 36
(@70 =Y a0 | =AY U= 11 o TS 36
(0000100 7=Y 15T PP 36

Micromega Corporation 2 uM-FPU V3 IDE User Manual

Installing and Connecting

SYMBDOI NGMIES «cvvnnt ittt r e 36
REGISTEr DAt TYPES ««-ueteetuatiiiiit e 37
Pre-defined Register NameEs . . cueuiiiiiiiiieei e 37
User-defined Register Namesuuviiiiiiiiiiiiiiii e 37
[0 T= Yo 0 0 = IO 13 7= T 1 = 37
[(=) =10 (=T 10 AT IO 0] 11 £] 1 37
Floating Point CONSTANTS «+vvvvvrvrriiiiiiiiiiiiiiiiii e 37
(=00 (= 11 aT= 0 IO 0] =) 0= a1 £ N U 37
W LST= 20 L=y iTaT=Yo B G0] 1] = 1 = 37
SHNG CONSLANTS «ovieeeeiiiiiiiee e 38
1V [Te g0 Yor0 LA g0 1 T=Y G Y= T =1 o] [= T 38
= T T 0T = (0] £ 38
LY P2 X0 T 0 10 1 = 39
(W LST= Y D= iTa Y=o B LU T a o 1] = 39
FUNCHON ProfOtyPesS < vn e 40
Global Symbols vs LOCal SYMDOIS -..vvveeeiiiiiieiiiiiii it 40
P XYY 10] o) 1= S 070 o =Y PP RTPP 41
LAY 2=] 00 Lo = Y PP RPP 41
Reference GUIde: ASSEMDIEr -ttt s s s s E e e EaEa R rarararararararnEnEnEnnn 42
P XYY 0] o) 1= G [a K] (0 o3 1[0 o K= N PP RTRPPIN 42
F N SToT= 0] 0] LY S DT =Y 03 1 Y= 43
SyMDBOl DEfiNItIONS -« eeeeeeeeiiie i 44
Branch and RetUrn INStIUCTIONS - cueeiuiiiiii ittt ettt et e et r et e et e et e e e e aneeenn 44
(@70 1o L1 10 T @30 To = 1= S 44
= o = £ PP 45
Using Branch Instructions and Labels «..c.eeeeeiininiiiiiiii 45
S =1 0= 1 =) 1 45
Repeat Statement «.ov. v 45
[T B =1 (=) /7= | 46

RS U0 T 1Yo 1F 0 T=Y (U 46
] o] (=Y [Fo (0 o3 1 o) o F= TR PP RTRPPI 47
1Y@]l [=3 183 (o Yo PP 47
Reference Guide: DebUgger ... 48
Making the CONNECHION -vvuniiiii e 48
DEDUG WINAOW -t 48
B 1= 0= = 1= 49
BreaKPOINES «vneeeeie e 49
The RegiSter Pan@l . .cceun e 50
0) g 1= TS T= o o 50
B0 = | 7= Y= £ (0] > PN 50
AFACE SUPPIES SOOI « ettt 51

B = 107 X0 LT = S 51
Reference Guide: Auto Step and Conditional Breakpoints «----..ccooviimiimimmuniniininintss e, 52
Auto Step Conditions Dialog -+ - vveeeerrmmriiieiriii i 52
[T = Y21 Cae] a T LTS (0 L0170 o 53

[== 1o] T 7Y 53

[T == 1o 1 T o T o | S 54
Break on Register Change .. evu i oeiiii 54
Break 0N EXPreSSION oeeu it 54
Break 0N SHHNG - oeeeeeee e 56
Reference Guide: Programming Flash Memory «..cccccooo s 57
T T3 10] T AT AT Vo [0 1R 57
Reference Guide: Setting uM-FPU V3 Parameters --......mmmmmemmiiniinnssssss s 59
Set Parameters Dialog -« - ceeeruieeiiiiee 59

Micromega Corporation 3 uM-FPU V3 IDE User Manual

Installing and Connecting

[T L= Y= 10 T 1= Y = | 59

B I = 0] T (=== 59
Use PIC Format (IEEE 754 is default) «.....uuuummmmimmmiiiiiiiiiiiiiiiiiiiiiiis s 59
Idle Mode Power Saving ENable .. . oovovevireiiii 60
= 7= =AY, o Yo = 60

2 O N [1 =Y = 60
L (0 3 7= 1 1Y, 0o = 60
Restore Default SEtiNgS - ovvveeeeeimi 60
Reference Guide: Target Description File -..cccoo s 61
11 G 62
= 1o IR o - Lo T 62
(00101102 7= 1T £ 62
Reviewing the SamPpIle File - vvveeveei 63
[=YY= 770 A [0 o = 65
Target Description COMMEANAS ++vvvvrrrmmiiieiiiii e 66

Micromega Corporation 4 uM-FPU V3 IDE User Manual

Installing and Connecting

Installing the uM-FPU V3 IDE Software

The uM-FPU V3 IDE software can be downloaded from the Micromega website at:
http://www.micromegacorp.com/ide-v3.html

The download is called uM-FPU V3 IDE xxx.zip (where xxx is the release number e.g. r328). Double-click or
unzip the file, then open the folder, and run the installer called uM-FPU V3 IDE setup.exe. The software is
installed in the Program Flles>Micromega folder, and the Start Menu entry is Micromega.

Connecting to the uM-FPU V3 chip

Compiling can be done without a serial connection, but a serial connection between the computer running the IDE
and the uM-FPU V3 chip is required for debugging and programming. For recent computers, the easiest way to add
a serial connection is using a USB to Serial adapter. Older computers with serial ports, or USB to RS-232 adapters
require a level converter (e.g. MAX232). The uM-FPU V3 chip requires a non-inverted serial interface operating at
the same voltage as the FPU (i.e. if the FPU is operating at 5V, the serial interface must be a 5V interface).

Examples of suitable USB to Serial adapters include:
Sparkfun ~ FTDI Basic Breakout - 5V http://www.sparkfun.com/
Parallax USB2SER Development Tool http://www.parallax.com/

Connection Diagram

PC running
uM-FPU V3 IDE

uM-FPU V3.1 = w

1 MCLR AvDDFE
—2{ ano AvsspHL
—S3ant scLk e
4 15
cs ouTor Microcontroller
. 5 1
USB to Serial Adapter —5| TN VbDFZ Board
—Llosct vss oar
—Zosce SIN/SDAHZ
8 11
XD SEROUT SOUT/SCL
uUsB RXD <] 91 SERIN outt &~
GND
——————————
e = =

Micromega Corporation 5 uM-FPU V3 IDE User Manual

http://www.micromegacorp.com/ide-v3.html
http://www.micromegacorp.com/ide-v3.html
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.parallax.com/
http://www.parallax.com/
http://www.micromegacorp.com/ide-v3.html
http://www.sparkfun.com/
http://www.parallax.com/

Overview of uM-FPU V3 IDE User Interface

Overview of uM-FPU V3 IDE User Interface

The main window of the IDE has a menu bar, and a set of tabs attached to five different windows. Clicking a tab will
display the associated window.

File Edit Debug Functions Tools Help

tutoriall.fpu \Output#Debug Functions | Serial 1O |

Source Window
The Source Window is the leftmost tab, and the filename of the source file is displayed on the tab. If the source
file has not been previously saved, the name of the tab will be untitled. If the source file has been modified since the

last save, an asterisk is displayed after the filename. The source file is stored as a text file with a default extension of
fou.

File Name Compile Button Target Menu Source Code

@2 uM-FPU V3 IDE

tutoriall.Fpu [Ou pd

Compile * | Target: [BASIC Stamp-SPI v

distance VAR TWord ' Microcontroller variable definitjdns
arealn VAR TWord

Radius equ Fl0 ' FPU register definitions

Diameter equ Fl1

Circunference equ Fl2

Area equ F13

Radius = distance / 1000 ' Calculations

Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

COM4-57600-8-N-1

Reset
1 1
Connection Status Status Message

The Source Window is used to edit the source code and compile the source code. Pressing the Compile button

Micromega Corporation 6 uM-FPU V3 IDE User Manual

Overview of uM-FPU V3 IDE User Interface

will compile the code for the target selected by the Target Menu. If an error occurs during compile, then an error
message will be displayed as the Status Message. All error messages are displayed in red.

Output Window

The Output Window is automatically displayed if the compile is successful. The status message will show that the
compile was successful. All normal status messages are displayed in blue.

Output Tab Button Bar Compiler Output Window

W UM-FPU V3 IDE

a | Functions | Serial IfO

Remove Source

Mo cenenne s uM-FPU Register Definitions ---f------------——--——---——-o

Radius Ccon 10 ' uM-FPU regigter
Diameter Con 11 ' uM-FPU regigter
Circumnference Con 1z ' WM-FPU regigter
Area con 13 ' WM-FPU regigter

el Lt Variable Definitions --------------——---————————————
distance VAR Word ' signed word wvariable
arealn VAR Word ' signed word wvariable

B e Generated Code ------—-——-—-——mmmmmm oo

' distance VAR Word ! Microcontroller variable definitions
' arealn VAR Word

1

' Radius equ F10 ' FPU register definitions

! Diameter equ Fll

! Circumference equ Fl2

' Area equ F13

|

' Radius = distance / 1000 ' Calculations

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO, LOADWORD, $03, $E&,
FDIVO]

' Diameter = Radius * 2

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2]

' Circumference = PI * Diameter

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSETO,
FMUL, Diameter]

' Area = PI * Radius * Radius

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSETO, FMUL, Radius,
FMUL, Radius]

COM4-57600-8-N-1 Compiled successfully For BASIC Stamp - SPI
I I
Connection Status Status Message

If the code was generated for a target microcontroller, the Select All and Copy buttons can be used to copy the
code from the window so it can be pasted into the microcontroller program. Alternatively, the code can be copy-and-
pasted a section at a time by doing a text selection and using the Copy button. The Remove Source button can be
used to remove the source code lines that are included as comments.

Micromega Corporation 7 uM-FPU V3 IDE User Manual

Overview of uM-FPU V3 IDE User Interface

Debug Window
The Debug Window is used for debugging. It displays the instruction trace, reset and breakpoint information, and
the contents of the FPU registers, string buffer and status value.

Register Display

Debug Trace Button Bar Selected Name Hex Value Formatted Value

@2 uM-FPU V3 IDE

File Edit Debug Functions Tools Help
| tutoriall.fpu | Output | Debug | Functions || Serial IO |
Go Step Auto|Step Trace [Read Regish}fls][Clean]
_______________________________________ ~
RESET: 2010-04-13 16:36:32 Rl IFFFFFFF Nal
__ R2 7FFFFFFF Nall
FO5C SYNC: |92 R3 7FFFFFFF Nal
F3 VERSION R4 7FFFFFFF Nall
F2754D2D4650 READSTR: “uM-FPU V3.1.2" R2 JFFFFFFF Nall
552056332E31 RE 7FFFFFFFNal
2E3200 R7 7FFFFFFF Nal
0104 SELECTA, Radius RS JFFFFFFE Nal
580000 LOADWORD, 0 R3 JFFFFFFF Nal
29 FSETO R10 Radius 00000000 0.0
SBO3ES LOADWORD, 1000 Rl1l Diameter 00000000 0.0
2E FDIVO ’ R1Z Circumference 00000000 0.0
010B SELECTA, Diameter A R13 Area 00000000 0.0
2004 FSET, Radius R14 JFFFFFFF Nal
3602 FMULI, 2 R1S 7FFFFFFF _Nal
0l0c SELECTA, Circumference R16 JEFFFFFE Nall
SE LOADPI R17 7FFFFFFF Nall 2
29 FSETO e - 2 rear
240B FMUL, Diameter Temporary Registers]
010D SELECTA, Area T1 7FFFFFFF Nal A
SE LOADPI T2 7FFFFFFF Nall
29 FSETO T3 7FFFFFFF_Nal
2404 FMUL, Radius T4 7FFFFFFF _Nal
2404 FMUL, Radius TS 7FFFFFFF _Nal
A T6 7FFFFFFF Nall b
String Length: 13 String Selection: 0, 13 Status: 00 ----
®
atl-F P V5. 1. 2 ;
0 5 10
COM4-57600-8-N-1 Reset
1 T
Connection Status String Buffer Status Message Status Byte

The Debug Trace displays messages and instruction traces. The Reset message includes a time stamp, is displayed
whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled. This can be
enabled at Reset by setting the Trace on Reset option in the Functions>Set Parameters... dialog, or at any
time by by sending the TRACEON instruction.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

Micromega Corporation 8 uM-FPU V3 IDE User Manual

Overview of uM-FPU V3 IDE User Interface

Functions Window
The Functions Window shows the function code for all new functions and stored functions. It also can be used
to program the functions into Flash memory on the FPU.

Function List

Name New Size Stored Size Compare New Function Code Button Bar

@2 uM--PU V3 IDE

File Edif Debug Functidogs Tools Help

GCdistance.fpu | Output | Debw

i Functions \ Serial I/O

Functidn List: \ Mew Function 7: NMEA |Degrees l

Name New Stored = 0000 LEFT ~ [ReadStored Functions |
0 getID 2 bytes 2 bytes Yes | (0001 STRFIELD, |129
1 getDistance 42 bhytes 42 bytes Yes | (0003 STRTOL
2 getLocation 181 bytes 181 bytes Yes 0004 LSETO - s
3 getLatLong 67 bytes 67 bytes Yes 0005 LDIVI, 104 L Program Functions J
4 radiansToDM 38 bytes 38 bytes Yes 0007 FLOAT)]
5 readiMEA 32 hytes . 32 bytes Yes 0008 LEFT ® Overwrite Stored Functions
6 parseGPRMC 18 bytes 18 bytes Yes 0009 STRFIND, "." ® always

; NMEA Degrees 43 bytes 43 bytes Yes gggg g%ig L © Confirm with User
g 0O00E READVAR, 15 O MNever

10 0010 STRSEL, 128, 7

11 0013 STRTOF

12 0014 FSETO

13 0015 FDIVI, 60

14 N7 RTRHT v

i: Stored Function 7: <read from FPU>

17 0000 LEFT N

18 0001 STRFIELD, 129

19 0003 STRTOL

20 0004 LSETO

21 0005 LDIVI, 100

22 0007 FLOAT

23 0008 LEFT

24 0009 STRFIND, "."

25 000C STRDEC

26 000D STRDEC ° B

27 000E READVAR, 15

28 0010 STRSEL, 128, 7

29 0013 STRTOF

30 0014 FSETO

31 0015 FDIVI, &0

EYS ¥l lnnmi7r mTRET b

COM4-57600-8-N-1 Compiled successfully for BASIC Stamp - SPI
1 T
Connection Status Status Message Stored Function Code

The Function List provides information about each function defined by the compiler and stored on the FPU. The
New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code
displays the FPU instructions for functions stored on the FPU. The Read Stored Functions button is used to read
the functions currently stored on the FPU, and the Program Functions button is used to program new functions to
the uM-FPU V3 chip.

Serial I/0 Window
The Serial /O Window shows a trace of the serial data exchanged between the IDE and the uM-FPU V3 chip. It’s
provided mainly for diagnostic purposes.

Micromega Corporation 9 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

Tutorial 1: Compiling FPU Code

This tutorial takes you through the process of compiling uM-FPU V3 code for a few simple examples. Various IDE
features are introduced as we go through the tutorial. For a more complete description of specific features, see the
the Reference Guide sections later in this document.

This tutorial uses the BASIC Stamp with a SPI interface as the target. If you’re working with a different

microcontroller or compiler, the procedures are the same, but the output code for the selected target will be different.
The figure below shows the process of developing FPU code using the IDE.

Compiling uM-FPU V3 code

uM-FPU V3 IDE Microcontroller Development Tool
tutorial1.fpu tutorial1.bs2

distance VAR Word ' Microcontroller variable definitions
arealn VAR Word === main definitions
Radius equ F10 ' FPU register definitions
Diameter equ Fl11 T UM-FPU Register Definitions =—=—=———m—mmmmmmmmmme
Circumference equ F12 Radius CON 10 ' uM-FPU register
Area equ F13 Diameter con 1 ' uM-FPU register
Circumference CON 12 ' UM-FPU register
Radius = distance / 1000 ' calculations Area con 13 ' UM-FPU register

Diameter = Radius * 2
Circumference = PI * Diameter e variable Definitions
Area = PI * Radius * Radius distance VAR Word ' signed word variable
arealn VAR Word ' signed word variable

L, initialization

compile
Output window

DEBUG CR, "umfpuV3-spi”, CR

GOSUB Fpu_Reset ' reset the FPU hardware
-------------------- UM-FPU Register Definitions —-----—--———-mmmmmmmmmmmmme
Radius CON 10 ' uM-FPU register IF status <> SyncChar THEN ' check for synchronization
Diameter CON 11 ' uM-FPU register DEBUG "uM-FPU not detected"
Circumference coNn 12 ' uM-FPU register END
Area con 13 ' UM-FPU register ELSE
GOSUB Print_Version ' display the uM-FPU version number
e Variable Definitions DEBUG CR
distance VAR Word " signed word variable ENDIF
arealn VAR Word ' signed word variable Copy
Initialize:
Code
" distance VAR tord " Microcontroller variable definitions & " (Insert initialization code here.)
' arealn VAR Word t
" Radius equ F10 " FPU register definitions paste N main routine
' Diameter equ Fl1
' Circumference equ F12 _>
" Area equ F13 Main:
' Radius = distance / 1000 ' Calculations SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius, LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0, LOADWORD, $03, SES,
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO, LOADWORD, $03, SES, FDIVO]
FDIVO] SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2)
' Diameter = Radius * 2 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSETO,
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2] FMUL, Diameter]
' Circumference = PI * Diameter SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSETO, FMUL, Radius,
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSETO, FMUL, Radius]
FMUL, Diameter]
' Area = PI * Radius * Radius Done:
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSETO, FMUL, Radius, DEBUG CR, "Done.", CR
FMUL, Radius] END

Steps

+ Create FPU source code file

« Compile the FPU code

+ Copy generated code to microcontroller program
+ Compile microcontroller program

+ Program the microcontroller UM-EPU
V3.1

program

KRR KRR

uM-FPU V3.1 Chip Microcontroller

Micromega Corporation 10 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

Starting the uM-FPU V3 IDE
Start the uM-FPU V3 IDE program. The program will open to an empty Source Window with the filename set to
untitled. Since we are using the Basic Stamp for this tutorial, use the Target Menu to select BASIC Stamp — SPI.

The Connection Status is shown at the lower left of the window. A connection is not required to use the
compiler, it’s only required for debugging and programming.

Entering a Simple Equation

The uM-FPU V3 IDE has predefined names for the registers in the FPU.
FO,F1,F2,... F127 specifies registers 0 through 127, and that the register contains a floating point value
LO,L1,L2,... L127 specifies registers O through 127, and that the register contains a long integer
U0, U1,U2, ... U127 specifies registers 0 through 127, and that the register contains an unsigned long integer

Using these pre-defined names, you can enter a simple equation directly. To add the floating point values in register
1 and register 2, and store the result in register 1, you can enter the following equation:

Fl = F1 + F2

The Source Window should look as follows:

Wi uUM-FPU V3 IDE Q@@

File Edit Debug Functions Tools Help

untitled ‘Output Debug | Functions | Serial IfO

Target: [BASIC Stamp -5PI v/ |

Fl = F1 + F2

Notice that the status line at the bottom of the window now reads Input modified since last compile. This lets you
know that you must compile to generate up-to-date output code. Click the Compile button. If the compile is
successful, the Output Window will be displayed, and the status message will be Compiled successfully for
BASIC Stamp — SPI.

If an error is detected, an error message will be displayed in red. If you get an error message, check that your input
matches the Source Window above, then click the Compile button again.

The Output Window should look as follows:

W uM-FPU V3 IDE Q@@

File Edit Debug Functions Tools Help

untitled | Output lDebug Functions | Serial IjO

Bttt Generated Code -- === === e b el
' Fl = F1 + F2
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, 1, FADD, 2]

The expression F1 = F1 + F2 has been translated into BASIC Stamp code. The code selects FPU register 1 as
register A, then adds the value of register 2 to register A. You’ve successfully compiled your first compile. (If you
want to see the code generated for a different target, go back to the Source Window and select a different target
from the Target Menu.)

Micromega Corporation 11 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

Defining Names
Math expressions can be easier to read when meaningful names are used. The IDE allows you to define names for
FPU registers, microcontroller variables and constants.

Registers are defined using the EQU operator and one of the predefined register names. Microcontroller variables are
defined using the VAR operator. For example, the following statements define TOTAL as a floating point value in
register 1, and COUNT as a byte variable on the microcontroller.

TOTAL EQU F1
COUNT VAR BYTE

The following statement would generate code to read the value of COUNT from the microcontroller, convert it to
floating point and add it to the TOTAL register.

TOTAL = TOTAL + COUNT

Sample Project

Suppose we have a distance measuring device that returns a number of pulses proportional to distance. It measures
distance from O to 30 inches and returns 1000 pulses per inch. We intend to use this device to measure the radius of a
circle, then calculate the diameter, circumference and area using the FPU. The results are displayed in units of inches
to three decimal places.

Calculating Radius

The number of pulses returned by the distance measuring device ranges from 0 to 30000 (30 inches x 1000 pulses
per inch), so we will need to use a word variable to store the value on the microcontroller. Since results will be
displayed in inches, we’ll divide the distance value by 1000 once it’s loaded to the FPU chip.

Create a new source file using the File>New... menu item, and enter the following code:

distance VAR word
Radius EQU F10

Radius = distance / 1000

The Source window should look as follows:

@2 uM-FPU V3 IDE CEX

File Edit Debug Functions Tools Help

untitled * | Qutput | Debug | Functions | Serial Ij0

Target: | BASIC Stamp - SPI v

distance VAR Word
Radius equ Fl0

Radius = distance / lElCIO|

Save the source file using the File>Save menu item. Save the file as tutorial1 (with .fou extension added
automatically).

Micromega Corporation 12 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

Click the Compile button.

The Output Window should look as follows:

@2 uM-FPU V3 IDE B

File Edit Debug Functions Tools Help

tutoriall.fpu * | Output | Debug | Functions | Serial IfO |

P W-FPU Register Definitions === bt
Radius CON 10 ' uM-FPU register

———————————————————— Variable Definitions ------ -—— ——
distance VAR Word ' signed word wariable

———————————————————— Generated Code -- === ===
' distance VAR TWord

' Radius equ Fl0
1
1

Radius = distance / 1000
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,

LOADWORD, distance.HIGHEYTE, distance.LOWBYTE, FSETO, LOADWORD, $03, $ES,
FDIVO]

The generated code does the following:
SELECTA, Radius
select the Radius register as register A
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO

load the 16-bit distance variable to the FPU, convert it to floating point, and store in Radius register
LOADWORD, $03, S$E8, FDIVO

load the constant 1000 (hexadecimal value $03, $ES8), convert it to floating point, and divide the Radius
register by that value

Copying Code to your Main Program

In this example we are using the BASIC Stamp as the target, so open the BASIC Stamp Editor and open the
template file umfpu-spi.bs2. Save a new copy called tutorial1.bs2.

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste in the
Basic Stamp program in the main definitions section.

Copy the Generated Code from the Output Window and paste in the Basic Stamp program after the Main label.

Since we don’t actually have the sensor described, we’ll enter a test value at the start of the program. Add the
following line immediately after the Main label.

distance = 2575

To print the result, add the following lines immediately after the code you copied.

DEBUG CR, "Radius = "
GOSUB Print Float

Micromega Corporation 13 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

The main section of your BASIC Stamp program should look as follows:

main definitions

B uM-FPU Register Definitions ----—-——————omom
Radius CON 10 ' uM-FPU register

e - Variable Definitions —--—————— == bl -
distance VAR Word ' signed word variable

Reset:
DEBUG CR, "umfpuvV3-spi", CR
GOSUB Fpu_Reset

reset the FPU hardware

IF status <> SyncChar THEN ' check for synchronization
DEBUG "uM-FPU not detected"
END

ELSE
GOSUB Print_Version
DEBUG CR

ENDIF

display the uM-FPU version number

Main:
distance = 2575

-------------------- Generated Code ———————— e
distance VAR Word
Radius equ F10
' Radius = distance / 1000
SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO, LOADWORD, $03, SES8,
FDIVO]

DEBUG CR, "Radius = "
GOSUB Print Float

Done:
DEBUG CR, "Done.", CR
END

Micromega Corporation 14 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

Running the Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window.

un fpulV3-spi J

wi-FPU V3.1.2

Calculating Diameter, Circumference and Area
Now that we have the initial program, let’s add the calculations for diameter, circumference and area. Add the
following register definitions in the start of the tutorial1.fpu:

Diameter equ Fl11
Circumference equ F12
Area equ F13

The area of a circle is twice the radius, so we add the following line to calculate diameter:
Diameter = Radius * 2

The circumference of a circle is equal to the value pi (i) times the diameter. The IDE has a pre-defined name for s,
called PI, so you can simple enter the following line to calculate circumference:

Circumference = PI * Diameter

The area of a circle is equal to pi (;t) times radius squared. The POWER function could use to calculate radius to the
power of 2, but for squared values it’s easier and more efficient to simply multiply the value by itself. Enter the
following line to calculate the area:

Area = PI * Radius * Radius

Finally, we’ll read the Area value back to the microcontroller as a 16-bit integer and print the result. To do this we
first add the following definition for the microcontroller variable:

arealn VAR Word

Next, we add the following line to convert the Area value to long integer and send the lower 16-bits back to
microcontroller.

arealn = Area

Micromega Corporation 15 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

The Source Window should look as follows:

@2 uM-FPU V3 IDE EBX

File Edit Debug Functions Tools Help

tutoriall.fpu™® | output | Debug | Functions | Serial 1jO

Target: YBASIC Stamp - SPI v ‘

distance VAR Word
arealn VAR Word
Radius equ F10
Diameter equ Fll
Circumference egqu Fl2
Area equ F13

Radius = distance / 1000
Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

arealn = Area

Click the Compile button.

Copy Revised Code to the Main Program
Copy the generated code from the IDE Output Window and paste over the previous code in the BASIC Stamp
program. Add additional DEBUG statements (as described above) to print the new results.

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste in the Basic
Stamp program in the main definitions section (replacing the previous definitions).

Copy the Generated Code from the Output Window and paste in the Basic Stamp program after the Main label
(replacing the previous code).

Add DEBUG and Print_FloatFormat statements for each of the calculated values Radius, Diameter,
Circumference and Area. We’ll use the Print FloatFormat with format = 63 to display the floating
point values in a field six characters wide with digits to the right of the decimal point.

DEBUG CR, "Radius: "
format = 63
GOSUB Print_FloatFormat

The main section of your BASIC Stamp program should look as follows:

main definitions

———————————————————— uM-FPU Register Definitions —-—-——-—————————

Radius CON 10 ' uM-FPU register
Diameter CON 11 ' uM-FPU register
Circumference CON 12 ' uM-FPU register
Area CON 13 ' uM-FPU register

Micromega Corporation 16 uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

distance VAR Word ' signed word variable

arealn VAR Word ' signed word variable

e ———————— initialization - ——————=—————————
Reset:

GOSUB Fpu_ Reset

IF status <> SyncChar THEN

reset the FPU hardware

DEBUG "uM-FPU not detected."
END
ELSE
GOSUB Print Version ' display the uM-FPU version number
DEBUG CR
ENDIF
B e e main routine —-——-—————— -
Main:

distance = 2575

Radius = distance

SHIFTOUT FpuOut, FpuClk, MSBFIRST,

/ 1000

[SELECTA, Radius,

LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO0, LOADWORD, $03, S$E8,

FDIVO]
DEBUG CR, "Radius:
format = 63

GOSUB Print FloatFormat

Diameter = Radius

SHIFTOUT FpuOut, FpuClk, MSBFIRST,
DEBUG CR, "Diameter:

format = 63

* 2

GOSUB Print FloatFormat

FMUL, Diameter]

DEBUG CR, "Circumference:

format = 63

Circumference = PI * Diameter
SHIFTOUT FpuOut, FpuClk, MSBFIRST,

GOSUB Print FloatFormat

FMUL, Radius]
DEBUG CR, "Area:
format = 63

Area = PI * Radius * Radius
SHIFTOUT FpuOut, FpuClk, MSBFIRST,

GOSUB Print_ FloatFormat

'—-—- arealn = Area
' arealn = Area

SHIFTOUT FpuOut, FpuClk, MSBFIRST,

GOSUB Fpu_Wait

SHIFTOUT FpuOut, FpuClk, MSBFIRST,
SHIFTIN Fpuln, FpuClk, MSBPRE,

[SELECTA, Diameter, FSET, Radius, FMULI, 2]

[SELECTA, Circumference, LOADPI, FSETO,

[SELECTA, Area, LOADPI, FSETO, FMUL, Radius,

[SELECTA, 0, LOAD, Area, FIX]

[LREADWORD]
[areaIn.HIGHBYTE, arealIn.LOWBYTE]

Micromega Corporation

17

uM-FPU V3 IDE User Manual

Tutorial 1: Compiling FPU Code

DEBUG CR, "Arealn: ", DEC Arealn

END

Running the Revised Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window:

wn fpulV3-spi N
wM-FPU V3.1.2

Radius:
Diameter:

Circunference:

Area:

Arealn:
Done.

Area is displayed as 20.831, but areaIn is displayed as 20. This is because when a floating point number is
converted to a long integer it is truncated, not rounded. If you prefer the value to be rounded, then use the ROUND
function before converting the number. In the FPU source file, replace:

areaIn = Area
with:

arealn ROUND (area)

Compile the FPU code, copy and paste the new code to the BASIC Stamp program. Run the program again. The
following output should now be displayed in the terminal window:

Saving the Source File
Use the File >Save command to save the file.

This completes the tutorial on compiling code for the uM-FPU V3 chip. With the information gained from this
tutorial, and more detailed information from the reference section, you should now be able to use the IDE to create
your own programs.

Micromega Corporation 18 uM-FPU V3 IDE User Manual

Tutorial 2: Debugging FPU Code

Tutorial 2: Debugging FPU Code

This tutorial takes you through some examples of debugging FPU code using the uM-FPU V3 IDE. We will use the
Basic Stamp program created in the previous tutorial for debugging.

Making the Connection
For debugging, the uM-FPU V3 IDE must have a serial connection to the uM-FPU V3 chip. Refer to the section at
the start of this document called Connecting to the uM-FPU V3 chip.

Tracing Instructions

The Debug Window of the IDE can display a trace of all instructions as they are executed. By default, tracing is
disabled. It can be enabled at Reset by setting the Trace on Reset option in the Functions>Set Parameters...
dialog, or it can be turned on or off at any time by sending the TRACEON or TRACEOFF instruction.

For this tutorial we will use the Trace on Reset option. Select the Functions>Set Parameters... menu item,
and enable the Trace on Reset option as shown below.

[lBreak on Reset

Trace on Reset

[TJEnable Busy/Ready Status on OUT1

[Juse PIC Format (IEEE 754 is default)

Idle Mode Power Saving Enable

[[]5leep Mode Power Saving Enabled
Interface Mode

(%) CS pin selects interface {default)

(O 12C interface (CS pin ignored)

() SPI interface (CS pin used as chip select)

12C Address: | C8
Auto-Start Mode
If CS pin is Low at Reset:
[Ipisable Debug
[Jcall Function:

[Restore Default Settings]

[ok | [Cancel |

Select the Debug Window, and click the Clear button above the Debug Trace to clear the trace area. Now run
the tutorial1.bs2 program that you developed in the previous tutorial. An instruction trace will be displayed in the
Debug Trace area. After the program stops running, click the Read Registers button to update the Register
Display, String Buffer, and Status. Scroll up to the beginning of the Debug Trace.

Micromega Corporation 19 uM-FPU V3 IDE User Manual

Tutorial 2: Debugging FPU Code

The Debug Window should look as follows:

uM-FPU V3 IDE M =E

File Edit Debug Functions Tools Help
tutorialt .fpu | Output | Debug lFunctions H Serial IJO ‘
Stop | Go o || Step | [AutoStep | (Trace Registers [Read Registers][Clear]
-~ 00000015 2.942727e-44 A
-- = -- | 7FFFFFFF_Nal
RESET: 2010-04-17 09:49:35 7FFFFFFF NalN
-- == 7FFFFFFF_Nal
FOSC SYNC: 92 7FFFFFFF Nall
F3 VERSION 7FFFFFFF_Nal
F2754D2D4650 READSTR: "uM-FPU ¥3.1.2" 7FFFFFFF Nal B
552056332E31 7FFFFFFF Nall
2E3200 7FFFFFFF Nal
0104 SELECTA, Radius 7FFFFFFF_NalN
SBOAOF LOADWORD, 2575 Radius 4024CCCD 2,575
29 FSETO Diameter 40A4CCCD 5,15
SBO3ES LOADWORD, 1000 Circumference 41816F02 16,1792
2E FDIVO Area 41464553 20.83072
1F3F FTOA, 63 7FFFFFFF NalN
F220322E3537 READSTR: " 2.575" 7FFFFFFF Nal
3500 7FFFFFFF_Nal
010B SELECTA, Diameter 7FFFFFFF NaN
2004 FSET, Radius TFFFFFFF NaN
3602 FMULI, 2 7FFFFFFF_NaN
1F3F FTOA, 63 7FFFFFFF Nal
F220352E3135 READSTR: " 5.150" 7FFFFFFF NaN
3000 7FFFFFFF Nall
olo0c SELECTA, Circumference 7FFFFFFF Nal
SE LOADPI 7FFFFFFF Nall
29 FSETO 7FFFFFFF_Nal
240B FMUL, Diameter 7FFFFFFF Nall v
1F3F FTOA, 63 b | N Cr—
F231362E3137 READSTR: "16.179" U LR
3900 Tl 7FFFFFFF_Nal A
010D SELECTA, Area T2 7FFFFFFF_Nal
SE LOADPI T3 IFFFFFFF Nall
29 FSETO T4 7FFFFFFF_Nal T
2404 FMUL, Radius TS 7FFFFFFF_Nal
2404 FMUL. Radius ™ T 7FFFFFFF Nal ™
String Length: 6 String Selection: 0, 6 Status: 80 ----
0 5
COM4-57600-8-N-1 Reset

The reset message is displayed at the top of the screen. Every time the FPU resets, a reset message is displayed with
a time stamp. The instruction trace shows the hexadecimal bytes of the instruction on the left, followed by the
disassembled instruction. If a source file has been compiled with symbol definitions, these symbols are used when
displaying the instructions. For instructions that read data from the FPU, the trace will also display the data being
sent.

Compare the instructions in the Debug Trace to the tutorial1.bs2 program. Tracing is very useful for checking the
actual sequence of instruction executed by the FPU. Many programming errors can often be found simply by
examining the trace.

Breakpoints

A breakpoint stops execution of FPU instructions. A BREAK message is displayed in the Debug Trace and the
Register Display, String Buffer, and Status are automatically updated. This enables you to examine the state
of the FPU at that point, and then continue execution, or to single step through the code one instruction at a time.

Micromega Corporation 20 uM-FPU V3 IDE User Manual

Tutorial 2: Debugging FPU Code

To experiment with breakpoints, add the following statement to the futoriall .bs2 program immediately after the
Main label.

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [BREAK]

Run the tutoriall .bs2 program again. A breakpoint occurs immediately after printing the version string. By
examining the Debug Window you can see the following:

* the debug trace shows the Reset message and a trace for all previously executed instructions

e the debug trace shows the BREAK message in red

e the version string is displayed in the string buffer

e the AX beside register 0 shows that it’s currently selected as register A and register X

* register 0 is displayed in red to indicate it has a new value

* the value in register O is the version code

e all other registers are NaN (Not-a-Number)

Single Stepping
By single stepping through the FPU code you can see exactly what’s happening. The following example steps
through a few instructions.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
e the debug trace shows the SELECTA , Radius instruction and the BREAK message
e the A beside register 10 shows that it’s now selected as register A
e register 0 is displayed in black since it hasn’t changed since the last breakpoint
* To experiment with breakpoints and single stepping, add the following line to your program at a spot that
you want a breakpoint to occur at.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
e the debug trace shows the LOADWORD, 2575 instruction and the BREAK message
e the A beside register 10 shows that it’s now selected as register A
» register 0 is displayed in red since it has a new value
e the value in register 0 is 2575.0

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
e the debug trace shows the FSETO instruction and the BREAK message
e register O is displayed in black since it hasn’t changed since the last breakpoint
* register 10 is displayed in red since it has a new value
e the value in register 10 is 2575.0

To continue normal execution, click the Go button.

You can experiment further by moving the BREAK instruction to another point in your program, or by adding
multiple breakpoints. More advanced single step capabilities are available using the Auto Step button. See the
section entitled Reference Guide: Debugging uM-FPU V3 Code for more information.

This completes the tutorial on debugging uM-FPU V3 code. With the information gained from this tutorial, and
more detailed information from the reference section, you should now be able to use the IDE to debug your own
programs.

Micromega Corporation 21 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

Tutorial 3: Programming FPU Flash Memory

User-defined functions and parameter bytes can be programmed in Flash memory on the uM-FPU V3 chip. This
tutorial takes you through an example of creating some user-defined functions.

Making the Connection
For programming Flash memory, the uM-FPU V3 IDE must have a serial connection to the uM-FPU V3 chip. Refer
to the section at the start of this document called Connecting to the uM-FPU V3 chip.

Defining functions
In the previous tutorials we developed and tested code to calculate the diameter, circumference, and area of a circle.
For this demonstration, we’ll define each of these calculations as a separate function.

The #FUNCTION directive is used to define a function. It specifies the number of the function (0 to 63) and an
optional name.

#FUNCTION 1 GetDiameter
All code that appears after a #FUNCTION directive will be stored in that function, until the next # FUNCTION
directive, an #END directive, or the end of the source file. There’s an implicit RET instruction at the end of all

functions.

Functions can call other functions. To ensure that the function being called is already defined, function prototypes
can be included at the start of the program. Function prototypes are defined using the FUNC operator, which assigns
a symbol name to a function number. We’ll use function prototypes in this tutorial example. The following function
prototype defines GetDiameter as function number 1.

GetDiameter func 1

You can assign the function number explicitly, or use the % character to assign the next unused function number.

GetDiameter func 1
GetCircumference func %
GetArea func %

If a function prototype has been defined, the # FUNCTION directive just uses pre-defined name.
#FUNCTION GetDiameter

Calling Functions
Functions are called by entering an ampersand (@) before the function name or number in the source code.

e.g.
@GetDiameter

Micromega Corporation 22 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

Modifying the Code for Functions

Open the source file called tutorial1.fpu that you saved in the first tutorial. Add a function prototype for the three
functions called GetDiameter, GetCircumference, and GetArea. Add a #FUNCTION directive before the
diameter, circumference and area calculations, and add an #END directive after the area calculation. Move the radius
calculation to after the function definitions, and add a call to the three functions. The source code will now look as

follows:

distance VAR Word
arealn VAR Word
Radius equ F10
Diameter equ Fl11
Circumference equ F12
Area equ F13
GetDiameter func 1
GetCircumference func 2
GetArea func %

#function GetDiameter

Diameter

= Radius *

2

#function GetCircumference

Circumference = PI * Diameter

#function GetArea

Area = PI * Radius * Radius

Microcontroller variable definitions

FPU register definitions

Function prototypes

Function 1

Function 2

Function 3

#end
Radius = distance / 1000 Calculations
arealIn = ROUND(area)
Micromega Corporation 23 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

Compile and Review the Functions
Click the Compile button. In the Output Window, the function code is displayed comments that show the uM-
FPU assembler code that was generated. This is the code that will be programmed to the FPU.

#function GetDiameter
Diameter = Radius * 2
' SELECTA, 11

' FSET, 10

' FMULI, 2

The Functions Window should look as follows:

@2 uM-FPU V3 IDE CEX

File Edit Debug Functions Tools Help

tutoriall.fpu | Output | Debug

Function List: Mew Function 3: GetArea

Nane New Stored | = 0000 SELECTA, 13 [Read Stored Functions |
| |oo0z LoaDPI

GetDiameter 6 bytes 0003 FSETO

GetCircunference 6 hytes 0004 FMUL, 10

Getdrea 8 hytes 0006 FMUL, 10 [Program Functions |

0008

£

Overwrite Stored Functions
® always
(O Confirm with User

9 O Never

Q0 1IN (0N s P I i IO

Stored Function 3:

v

COM4-57600-8-N-1 Compiled successfully for BASIC Stamp - SPI

The Function List shows that three functions have been defined. The New Function Code displays the FPU
instructions for the selected function. The Stored Function Code displays the FPU instructions for the function
stored on the FPU. If no function has previously been programmed, the Stored Function Code will be empty.
You can see the code for a different function by selecting it in the Function List.

Storing the Functions

Make sure that the Overwrite Stored Functions preference is set to Always (as shown in the figure above).
Click the Program Functions button to program the functions into Flash memory on the FPU. A status dialog will
be displayed as the functions are being programmed. If an error occurs, check the connection. You may need to

Micromega Corporation 24 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

power the uM-FPU V3 chip off and then back on to ensure that it has been reset properly before trying again.

Running the Program
Copy the generated code from the Output Window to the BASIC Stamp program, replacing the diameter,
circumference and area calculations with function calls. Remember to also copy the uM-FPU Function definitions.

The main routine in your BASIC Stamp program should now look as follows:

———————————————————— uM-FPU Register Definitions -—-——-——————————

Radius CON 1 ' uM-FPU register 1
Diameter CON 2 ' UM-FPU register 2
Circumference CON 3 ' uM-FPU register 3
Area CON 4 ' uM-FPU register 4

———————————————————— uM-FPU Function Definitions - -—--————————— e

GetDiameter CON 1 ' uM-FPU user function 1
GetCircumference CON 2 ' uM-FPU user function 2
GetArea CON 3 ' uM-FPU user function 3

———————————————————— Variable Definitions —-—-———-——————— o~

distance VAR Word ' signed word variable

arealn VAR Word ' signed word variable

B initialization —————————
Main:

distance = 2575

' Radius = distance / 1000

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSETO, LOADWORD, $03, S$ES8,
FDIVO]

DEBUG CR, "Radius: !

format = 63

GOSUB Print FloatFormat

' @GetDiameter

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetDiameter]

format = 63

GOSUB Print FloatFormat

' @GetCircumference

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetCircumference]

DEBUG CR, "Circumference: "

format = 63

GOSUB Print FloatFormat

' @GetArea

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetArea]
DEBUG CR, "Area: "

format = 63

GOSUB Print FloatFormat

arealn = ROUND (area)

Micromega Corporation 25 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, 0, LEFT, FSET, Area, ROUND, RIGHT,
FIX]

GOSUB Fpu Wait

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [LREADWORD]

SHIFTIN Fpuln, FpuClk, MSBPRE, [arealn.HIGHBYTE, arealIn.LOWBYTE]

DEBUG CR, "Arealn: , DEC Arealn

END

Micromega Corporation 26 uM-FPU V3 IDE User Manual

Tutorial 3: Programming FPU Flash Memory

Save the IDE source file as tuforial2.fpu and save the BASIC Stamp program tutorial2.bs2, then run the program.

The following output should be displayed in the terminal window:
wi-FPU V3.1.2

Radius:
Diameter:
Circumference:
Area:

Arealn:

Done.

Note: If the user-defined functions have not been stored properly, the output will look like the following:
uM-FPU V3.1.2 -

Radius:
Diameter:

Circunference:
Area:

Arealn:
Done.

Since calling an undefined functions has no effect, register A remains unchanged after the Radius
calculation, and the same value prints out for each Print Format call. The AreaIn value is displayed
as 65535 because the value of Area is NaN, so Arealn is returned as —-1.

This completes the tutorial on storing user-defined functions. With the information gained from this tutorial, and
more detailed information in the reference section, you should be able to use the IDE to define your own functions
and program them to Flash on the uM-FPU V3 chip.

Micromega Corporation 27 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Reference Guide: Menus and Dialogs

File Menu

Mew. .. Crl+n

Open... Ctrl+0O

Open Recent 4
Save Ctrl+5

Save As... Ctrl+Shift+5

Exit Crl+Q

New... menu item creates a new source file and sets the name to untitled. If a previous source file is open and has
been changed since the last time it was saved, you will first be prompted to save the previous source file.

Open... menu item opens an existing source file, using the file open dialog. If a previous source file is open and has
been changed since the last time it was saved, you will first be prompted to save the previous source file.

Open Recent menu item provides a sub-menu that lists up to ten source files that were recently saved. Selecting a
source file from the sub-menu will open the file. If a previous source file is open and has been changed since the last

time it was saved, you will first be prompted to save the previous source file.

Save menu item saves the source file. If the source file has not been previously saved, a file save dialog will be
displayed.

Save As... menu item displays a file save dialog and allows a new filename to be specified.

Exit menu item causes the IDE to quit. If a source file is open, and has been changed since the last time it was
saved, you will first be prompted to save the source file.

Edit Menu
Undo Ctrl+2
Redo Ctrl+5Shift+2
Cut Chrl+x
Copy Ctrl+C
Clear

Select all - Ctrl+a
Comment Ctrl+;

Find... Ctrl+F
Find Next F3
Replace... Ctrl+H

Undo menu item cancels the last edit in the Source Window.

Micromega Corporation 28 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Redo menu item restores the edit cancelled by the last Undo.

Cut menu item removes the selected text from the Source Window.

Copy menu item copies the selected text from the Source Window to the clipboard.

Paste menu item pastes the text in the clipboard to the current selection point in the Source Window.

Clear menu item deletes the selected text from the Source Window.

Select All menu item selects all of the text in the current text field.

Comment menu item is used to add a semi-colon as the first character of every currently selected line in the
Source Window. This provides a way to quickly comment out a block of code. If all of the lines currently selected
have a semi-colon as the first character, the menu item changes to Uncomment.

Uncomment menu item removes the semi-colon from the start of all selected lines.

Find... menu item brings up the Find Dialog.

F aAEa

Find What:

Replace With: Replace

Search Conditions
() From top
@' From cursor

[[Imatch case

Replace Mext

Replace All

Close

The Find dialog is a moveable dialog and can be placed alongside the Source Window and left open when
multiple find and replace operations are done. The Find What field specified the string to search for, and the
Replace With field specifies the string to replace it with. If the From top search condition is selected, the search
starts from the top of the window. The search condition will automatically change to From cursor on the first
successful match. If the From cursor search conditions is selected, the search starts from the current cursor
position. When the Match case option is selected, the search is case sensitive. The following special characters can
be used in the Find or Replace strings: \t for a tab character, \ r for end of line, and \\ for backslash.

The Find Next button searches the Source Window for the next match. The Replace button replaces the
matched string. The matching text is highlighted on the first button press and replaced by the Replace With string
on the next button press. The Replace All button replaces all occurrences of the Find What string with the
Replace With string. The Close button closes the Find dialog.

Find Next menu item finds the next match based on the current search conditions in the Find dialog.

Replace menu item brings up the Find Dialog.

Micromega Corporation 29 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Debug Menu
Select Port...
Stop FS
Go F6
Step F7
Auto Step F3
Auto Step Conditions Ctrl+F38
Turn Trace On Chrl+T
Read Registers
Read Version
Read Checksum

Select Port... menu item is used to display the Port Setup dialog which is used to select the serial
communications port.

Serial Port: | COM3 v
Baud Rate: Data Bits:
Parity: Stop Bits:

[Cancel | [ok |

Go, Stop, and Step menu items have the same function as the Go, Stop and Step buttons in the Debug
Window.

Turn Trace On and Turn Trace Off menu items have the same function as the Trace button in the Debug
Window.

Auto Step Conditions menu item brings up the Auto Step Conditions dialog. See the section entitled
Reference Guide: Auto Step and Conditional Breakpoints for more details.

Auto Step menu item continues execution in auto step mode. See the section entitled Reference Guide: Auto
Step and Conditional Breakpoints for more details.

Read Registers menu item has the same function as the Read Registers button in the Debug Window.
Read Version menu item will display the version of the FPU in the Debug Trace.

Read Checksum menu item will display the checksum of the FPU in the Debug Trace.

Micromega Corporation 30 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Functions Menu

Functions

Select Port...

Read Stored Functions
Program Functions

Show Flash Memory...

Show EEPROM Memory...

Clear Flash Memory
Set Parameters...

Select Port... menu item is used to display the Port Setup dialog which is used to select the serial

communications port.

Serial Port: | COM3
Baud Rate:

Parity:

Data Bits:

Stop Bits:

9

Cancel

||

OK

Read Stored Functions menu item has the same function as the Read Stored Functions button. It reads the
flash memory and updates the function list in the Function Window.

Program Functions menu item has the same function as the Program Functions button. It programs the user-
defined functions to the FPU chip.

Show Flash Memory... menu item displays a memory map showing the usage of the Flash memory reserved for
user-defined functions on the uM-FPU V3 chip. A status line at the top shows the percent of memory used and the

number of bytes available.

Micromega Corporation

31

uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Flash Memory Map

Flash Memory: 16% used, 1712 bytes available, (4 of 64 defined)

o(l|2(3|4(5(6|7(8|9(A|B|[C|D|E|F
0000 |01 00 OO0 04 01 04 0D 8E 01 92 00 B2 02 44 00 08 ~
0010 (00 00 00 0O 0O OO 00 00 OO0 OO 0O 0O OO OO 00 00
0020 |00 0O 0O OO OO OO OO OO OO OO OO OO OO OO OO0 00
0030 |00 00 0O 0O OO OO OO OO OO OO OO OO OO OO OO0 OO0
0040 |00 00 0O 0O OO 0O OO OO OO OO OO OO OO OO 00 OO
0050 |00 00 0O 0O OO 0O OO OO OO OO OO OO OO OO 00 OO0
0060 |00 0O 0O OO 0O OO 0O 0O 0O OO OO OO OO OO OO0 00
0070 |00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO0
0080 |00 00 0O 0O OO OO OO OO OO OO OO OO OO OO 00 OO
0080 |00 00 0O 0O OO 0O OO OO OO OO OO OO OO OO 00 OO0
00A0 | OO 0O 0O OO OO OO OO OO OO OO OO OO OO OO OO0 OO0
00BEO |00 0O 0O 0O OO OO 0O 0O 0O OO OO OO OO OO OO0 00
00CO |00 00 0O 0O OO OO OO OO OO OO OO OO OO OO 00 OO0
00DO |00 00 00O 00 OO 0O OO OO OO OO OO OO OO OO 00 OO0
Q0EO |00 0O 0O QOO OO OO 0O 0O OO OO OO OO OO OO OO0 OO0
Q00F0 |00 0O 0O 0O 0O OO 0O 0O OO OO OO OO OO OO OO0 00
0l00 |CE 01 OD 00 01 Ol 20 OD 22 OB 47 3C 82 60 ZF 01
0110 |0OF 14 14 14 14 20 0OC 47 15 29 14 20 0A 47 15 2B
0120 |14 20 OE 48 15 2D 15 29 15 29 14 14 20 OE 47 15 V¥

Memory Map Legend
[_] Function Header ~ [__] Function Code

[] unused Header [] unused
] parameter Data

Show EEPROM Memory... menu item displays the EEPROM Memory Map dialog.

M EFPROM Memory Map g@@

EEPROM memory: 256 address slots (1024 bytes) Data; Slot 0

Slat +0 +1 +2 +3 Float -1.065189e-37
0 |8210FC6E | 00E40750 BALOFC7F 01031051 A b%g? et '221‘8122;?511622,?51
4 |AGOFFCO3 02100110 11FCO00L 50822083 | | o™ anee
3 |E402BD0B 02B90082 EC728203 019E0201
12| E4095182 00ESS281 029E0301 BEO20307
16 |0201B902 E40C7082 00010082 20B311FC User Defined Function: Slot 0

20 |BDECS182 9E030102 05518202 ESS382E4

24 |03020700 019E0201 808281E4 07007F37 | (0000 READVAR, 16 A
28 | 02BE0Z03 52020189 82E41170 FCO00100 0002 BRA, NZ, $000C

32 |82308B311 2EB3ECS1 BDO25182 9E030102 0005 STRSEL, 0, 127

3605518202 ES8352E4 03020700 019E0201 0008 READVAR, 16

40 | 305281E4 0601100F 00BADSD7 F9725201 0004 RET, 2 i
44 80D7FFC6 e rrrrrrer rrrerrerrT 000CC0PY0‘3

48 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF DDDESELECTF"3

52 rrerrrerT rerreeT rrrrrerrs rerrreer UDIUREADVAR‘ls

S6 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0012 LADDO

60 rrrrerrT rrererrT rrrrreer rrrrreeT UUISCOPYD,I

64 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF UDISCOPYU’Z

68 rerrrerrT rrrrreerT rrrreerrT rrrrrereT 0017SELECTAJU

72 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFS 0019 READVAR, 17

76 rrrrerrT rrrrrrrT rrrrreer rrrerrerr 0018LCMPI‘32

o e e v | |o01D BRA, Mz, $0028 v

Memory Map Legend

[] Function Header [| Data

I:I Function Code

Micromega Corporation 32 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

The EEPROM Memory Map dialog displays the contents of EEPROM memory. The 32-bit value contained in each
slot of the memory map is displayed as a hexadecimal value. Slots that may contain user-defined functions are
displayed with a green background for the function header, and a blue background for the remainder of the function
code. Function headers are identified by looking at the first byte and using that value as an index to another byte that
must be 0x80 (the RET instruction). It’s possible for slots with the right configuration of data to be shown in the
memory map as a user-defined function without actually being one.

When a slot is selected by clicking on the EEPROM memory map, the 32-bit value of the selected slot is displayed
in the upper right field in floating point, long integer, unsigned integer, and hexadecimal format. If the slot is also
identified as part of a user-defined function, the disassembled code for the function is displayed in the lower right
field.

Clear Flash Memory menu item will clear all of the user-defined functions from Flash memory on the uM-FPU
V3 chip. A dialog will be displayed requesting confirmation before the functions are cleared from memory.

Set Parameters... menu item is used to set the FPU parameter bytes. See the section entitled Reference Guide:
Setting uM-FPU V3 Parameters for more details.

Tools Menu

Tools

Show Main Window
Show Number Converter

Set Clock Speed...

Show Main Window menu item is used to bring the main IDE window to the front.

Show Number Converter menu item is used to bring the Number Converter window to the front. The number
converter provides a quick way to convert numbers between various 32-bit formats. Floating point, decimal and
hexadecimal numbers are supported. The Auto, Float, Decimal, and Hexadecimal buttons above the Input field
determine how the input is interpreted. If Auto is selected, the input type is determined automatically based on the
characters entered in the Input field. The input type is displayed to the right of the Input field. The input type can
be manually set using the Float, Decimal and Hexadecimal buttons. Invalid characters for the selected type are
displayed in red, and will be ignored by the converter. The Output fields display the input value in all three formats.
The hexadecimal format can be displayed as 8-bit bytes, 16-bit word, or as a 32-bit value, with a choice of prefix
characters. The format can be selected to match the format used by microcontroller programs.

One of the handiest ways of using the number converter is with copy and paste. You can copy a number from
program code or a trace listing, and paste into the Input field. The Input field accepts floating point numbers,
decimal numbers, and hexadecimal numbers in 8-bit, 16-bit and 32-bit formats. You can copy from the Output
fields to program code.

Micromega Corporation 33 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

Number Converter B’E\@

 (OFloat ODecimal O Hexadecimal

Float
Output
|100.25 Float
|1 120436224 Decimal
|$42, $C8, $30, $00 Hexadecimal
Hex Prefix Hex Format
s v| |ebi v

Close

Set Clock Speed... menu item displays the Set Clock Speed dialog, and is used to change the clock speed of
the FPU.

Set Clock Speed

Clock Speed: 29.48 MHz - internal oscillator {default) v ‘

May require power down/power up cycle.

[Cancel] [Change Clock]

The default clock speed is 29.48 MHz, using an internal oscillator, which provides the maximum execution speed.
The clock speed only needs to be changed for special circumstances such as low-power applications (e.g. for 3.3V
operation, the maximum clock speed should be 14.74 MHz). The clock source is stored in Flash memory as part of
the device configuration bits. The clock selection indicates the clock source to use at power-up. If the selected clock
source can’t be validated at power-up, the uM-FPU V3.1 chip will fall back to an internal clock speed of 1.8425
MHz. The available clock speeds and clock sources are selected by entering one of the following values:

29.48 MHz - internal oscillator (default) maximum for 5V operating voltage
14.74 MHz - internal oscillator maximum for 3.3V operating voltage
7.37 MHz - internal oscillator maximum for 2.7V operating voltage

1.8425 MHz - internal oscillator

29.4912 MHz - external 7.3728 MHz crystal
20.0 MHz - external 10.0 MHz crystal

10.0 MHz - external 10.0 MHz crystal

Micromega Corporation 34 uM-FPU V3 IDE User Manual

Reference Guide: Menus and Dialogs

It may be necessary to power the chip off and back on before the new clock source will take effect since some clock
sources use an internal PLL that only resets at power up.

Help Menu

uM-FPU Y3 IDE User Manual
uM-FPU ¥3 IDE Compiler
uM-FPU ¥3.1 Instruction Set
uM-FPU ¥3.1 Datasheet

Micromega Website
Application Notes

About uM-FPU V3 IDE

uM-FPU V3 IDE User Manual, uM-FPU V3 IDE Compiler, uM-FPU V3.1 Instruction Set, and uM-FPU
V3.1 Datasheet menu items display documentation files using the default PDF viewer. The IDE will open the files
on the Micromega website using the default web browser.

Micromega Website menu item opens the Micromega website using the default web browser.

Application Notes menu item opens the application notes page on the Micromega website using the default web
browser.

About uM-FPU V3 IDE menu item displays a dialog with product identification, release version and release date
of the uM-FPU IDE software.

Micromega Corporation 35 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

Reference Guide: Compiler

The uM-FPU V3 IDE provides a compiler for generating uM-FPU V3 code for either a target microcontroller, or for
user-defined functions that are stored in Flash memory on the FPU. The Source Window has a built-in editor for
entering the source code. The source code contains symbol definitions and math equations that will be converted to
FPU instructions by the compiler. The output format is customized to the correct syntax for the target
microcontroller. User-defined functions can be programmed to Flash memory on the uM-FPU V3 chip.

Symbol definitions can include FPU registers, variables, and constants. Math equations can use long integer or
floating point values, and can contain defined symbols, math operators, functions and parentheses. The compiler also
supports an in-line assembler for entering FPU instructions directly.

Order of Evaluation
Math equations are evaluated by the IDE from left to right with no operator precedence.

Fl = F2 + F3 * F4

results in F1 being set to the value of F2 added to F3, then multiplied by F4. Parentheses must be used to change
the order of operations.

Fl = F2 + (F3 * F4)

results in F1 being set to the value of F2 added to the value of F3 multiplied by F4. Multiple constant values
entered one after another are automatically reduced to a single constant in the expression.

Fl =F2 *5 / 2

results in F1 being set to the value F2 multiplied by 2. 5. If you don’t want constants to be reduced, you need to use
parentheses. The familiar expression for converting temperature from Celsius to Fahrenheit would be entered as:

Fl = (F2 * 9 / 5) + 32

If no parentheses were used in the above equation, the equation would be calculated as F2 multiplied by 33. 8,
which is incorrect. The code generator often adds one level of parenthesis, so parentheses in math equations should
only be nested up to seven levels deep, including the parentheses used for functions.

Comments
Comments can be added to any line of source code. Comments are preceded by an apostrophe, semi-colon or
double slash characters. All text after the comment prefix to the end of line is considered a comment.

all text after an apostrophe to the end of line is a comment
; all text after a semi-colon to the end of line is a comment
// all text after a double slash to the end of line is a comment

Symbol Names

Symbol names must begin with an alphabetic character, followed by any number of alphanumeric characters or the
underscore character. Symbol names can be defined for FPU registers, constants, microcontroller variables, and
functions. They are not case-sensitive. Here are some examples:

getDistance
latitudel
NMEA Degrees

Micromega Corporation 36 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

Register Data Types
The 32-bit FPU registers can be defined for Float, Long or Unsigned data types.

Float 32-bit IEEE 754 format
Long 32-bit signed integer
Unsigned 32-bit unsigned integer

Pre-defined Register Names
The uM-FPU V3 chip has 128 FPU registers. The following register names are pre-defined:

F0,F1,F2,...F127 specifies that register 0 to 127 contains a Float data type
L0,L1,L2,...L127 specifies that register O to 127 contains a Long data type
Uo0,Ul,u02,...U0127 specifies that register O to 127 contains an Unsigned data type

User-defined Register Names
User-defined names can be assigned to registers with the EQU operator. The user-defined register name on the left of
the EQU operator is set to the value of the pre-defined register name on the right. For example:

reg0 EQU FO
tmpl EQU F1
Y EQU F10
X EQU F11
Radius EQU F12

shoulderPulseRate EQU L13

Decimal Constants
Decimal constants are represented as a sequence of decimal digits (without commas, spaces, or periods), with
optional + or - prefix.

120 =53 100000 +207

Hexadecimal Constants
Hexadecimal constants must have a 0x or $ prefix and are represented as a sequence of hexadecimal digits (without
commas, spaces, or periods). The hexadecimal digits and prefix can be upper or lower case.

$55 0xXFF SFFFF 0x13

Floating Point Constants

Floating point constants consist of an optional + or - prefix, decimal integer, decimal point, decimal fraction, e or E,
and a signed integer exponent. Only the decimal integer is required, the other fields are optional. If the e or E is used
an integer exponent must follow.

1.0 -53 1E6 -1.5e-3

Pre-defined Constants
PT constant value for pi (3.1415926)
E constant value for e (2.7182818)

User-defined Constants
User-defined constants can be defined with the CON or EQU operator. The user-defined constant on the left of the
CON or EQU operator is set to the value of the constant expression on the right. The compiler simplifies constant

Micromega Corporation 37 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

expressions to a single constant value. For example:

e.g.
Length CON 4.75
Pi2 CON PI / 2
or
Length EQU 4.75
Pi2 EQU PI / 2

String Constants

A string constant is enclosed in double quote characters. Special characters can be entered using a backslash
followed by two hexadecimal digits. The backslash and double quote characters can be entered by preceding them
with a backslash.

String Constant Actual String

"sample" sample

"string2\0D\0OA" string2<carriage return><linefeed>
"5\\3" 5\3

"this \"one\"" this "one"

Microcontroller Variables
Microcontroller variables are defined using the VAR or EQU operator and one of the following keywords:

BYTE 8-bit signed integer value
UBYTE 8-bit unsigned integer value
WORD 16-bit signed integer value
UWORD 16-bit unsigned integer value
LONG 32-bit signed integer value
ULONG 32-bit unsigned integer value
FLOAT 32-bit floating point value
count EQU BYTE
sensorInput EQU UWORD
lastAngle EQU FLOAT

When microcontroller variables are used in expressions, the IDE generates the necessary code to transfer the value
between the microcontroller and the FPU. For example, the following input would generate code to load degreesC
from the microcontroller, convert it to floating point, multiply it by 1.8, then add 32.

degreesC EQU BYTE
degreesF EQU F10

degreesF = (degreesC * 9 / 5) + 32

Special syntax for PICAXE
When writing code for the PICAXE, variable definitions must include the PICAXE register used
for the variable.

degreesC EQU BYTE b3
degreesF EQU UWORD w0

Math Operators
The following math operators can be used for Float, Long and Unsigned data types.
+ Plus

Micromega Corporation 38 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

- Minus
Multiply
Divide

X =-y * 2z / 2

Math Functions

The following math functions are provided. Each of the functions uses an FPU instruction of the same name (ABS,
MOD, MIN and MAX use the FABS, FMOD, FMIN, FMAX instructions for floating point data types, and the LABS,
LDIV (remainder), LMIN, LMAX instructions for Long or Unsigned data types). More detailed information on the
functions can be obtained by referring to the corresponding FPU instruction in the uM-FPU V3.1 Instruction Set
document.

Function Arguments Return Description

SORT (argl) Float Float square root of argl.

LOG(argl) Float Float logarithm (base e) of argl.

LOG10 (argl) Float Float logarithm (base 10) of arg!.

EXP (argl) Float Float e to the power of argl.

EXP10 (argl) Float Float 10 to the power of argl.

SIN(argl) Float Float sine of the angle arg/ (in radians).

COS (argl) Float Float cosine of the angle arg/ (in radians).

TAN (argl) Float Float tangent of the angle arg/ (in radians).
ASIN(argl) Float Float inverse sine of the value argl.

ACOS (argl) Float Float inverse cosine of the value argl.

ATAN (argl) Float Float inverse tangent of the value argl.

ATAN2 (argl, arg2) Float Float inverse tangent of the value arg/ divided by arg2.
DEGREES (argl) Float Float angle argl converted from radians to degrees.
RADIANS (argl) Float Float angle argl converted from degrees to radians.
FLOOR (argl) Float Float floor of argl.

CEIL(argl) Float Float ceiling of argl.

ROUND (argl) Float Float argl rounded to the nearest integer.

POWER (argl, arg2) Float Float argl raised to the power of arg2.

ROOT (argl, arg2) Float Float arg2 root of argl.

FRAC (argl) Float Float fractional part of argl.

INV(argl) Float Float the inverse of argl.

FLOAT (argl) Long Float converts argl from long to float.

FIX(argl) Float Long converts argl from float to long.
FIXR(argl) Float Long rounds argl then converts from float to long.
ABS (argl) Float/Long Float/Long absolute value of argl.

MOD (argl, arg2) Float/Long Float/Long the remainder of arg/ divided by arg2.
MIN(argl, arg2) Float/Long Float/Long the minimum of arg! and arg2.

MAX (argl, arg2) Float/Long Float/Long the maximum of arg/ and arg2.

theta = sin(angle)
fcube power (£, 3)
result = cos(PI/2 + sin(theta))

User-Defined Functions
User-defined functions are specified using the # FUNCTION directive. After a #FUNCTION directive is
encountered, all compiled code is stored in the function specified. The end of a function occurs at the next

Micromega Corporation 39 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

#FUNCTION directive, # END directive, or the end of the source file. The # FUNCTION directive can optionally
include a function name that can be used in the remainder of the source file to call the function.

#FUNCTION 1 GetDiameter function definition

A function call is specified by using the @ character followed by a constant value between 0 and 63 representing the
number of the function, or by the @ character followed by the name of a previously defined function.

@1 call function 1
@Addvalue call function AddValue

An example of a function definition and function call is as follows:

Valuel EQU BYTE microprocessor variable definitions
Value2 EQU BYTE

X EQU F1 register definitions
Y EQU F2

Z EQU F3

#FUNCTION 1 Hypotenuse function definition
7 = SQRT(X*X + Y*Y)

#END

X = Valuel
Y Value2
@Hypotenuse call function Hypotenuse

Function calls can be nested up to 16 levels deep.

Function Prototypes

To ensure that the function being called is already defined, function prototypes can be included at the start of the
program. By placing prototypes at the top of the source code, functions can be defined and called in any order, since
the function values are known. Function prototypes are defined using the FUNC operator, which assigns a symbol
name to a function number. You can assign the function number explicitly, or use the % character to assign the next
unused function number.

GetDiameter func 1 GetDiameter is function 1
GetCircumference func % GetCircumference is function 2
GetArea func % GetArea is function 3

Global Symbols vs Local Symbols

All symbols defined at the top of the source file, outside of any function, are global symbols, and can be used by any
source code that follows. Symbols that are defined inside a function, are local symbols, and can only be used within
that function.

tmp1l equ F1 global symbol definition

#function samplel

tmp2 equ F2 local symbol definition
SELECTA, tmpl both tmpl and tmp2 are defined inside the function
FSET, tmp2

Micromega Corporation 40 uM-FPU V3 IDE User Manual

Reference Guide: Compiler

#end
only tmpl is defined outside the function

Assembler Code

The IDE compiler converts regular math equations in the source code into the required uM-FPU V3 instructions for
performing the calculation. Some capabilities of the uM-FPU V3 chip are not accessible using the compiler, or in
some cases it may be possible to write more optimized code using assembler. Assembler code can be entered by
enclosing it with the #ASM and #ENDASM directives. See the next section entitled Reference Guide: Assembler for
more details on assembler code.

#ASM start of assembler
SELECTA, 1
LOADPI assembler code
FSETO
FDIVI, 2

#ENDASM end of assembler

Wait Code

The uM-FPU V3 chip has a 256 byte instruction buffer. If the instructions and data in a calculation exceed 256
bytes, the buffer could overflow, so the program must wait for the buffer to empty at least every 256 bytes. The code
generated by the IDE accounts for this, and will insert a wait sequence as required. Read operations automatically
generate a wait sequence, so in many applications, no additional wait sequences are required.

Micromega Corporation 41 uM-FPU V3 IDE User Manual

Reference Guide: Assembler

Reference Guide: Assembler

Assembler code can be entered by enclosing it with the #ASM and #ENDASM directives. Multiple instructions can be
entered on a single line, and an instruction can span more than one line, but each element of an instruction (e.g. a
number or string) must be on a single line. For example:

#ASM SELECTA,

or
#ASM
SELECTA,
LOADPI
FSET
#ENDASM

Assembler Instructions

1

1 LOADPI FSET #ENDASM

single line of assembler

multiple lines of assembler

All assembler instructions start with an opcode followed by any required arguments (if any) separated by commas.
Opcode names and symbol names may be entered in uppercase or lowercase, they are not case sensitive. The
following table summarizes the syntax for each instruction and the required arguments. Please refer to the uM-FPU

V3.1 Instruction Set document for a more detailed description of the instructions.

NOP
SELECTA, reg
SELECTX, reg

CLR, reg
CLRA

CLRX

CLRO

COPY, reg, reg
COPYA, reg
COPYX, reg
LOAD, reg
LOADA
LOADX
ALOADX
XSAVE, reg
XSAVEA
COPYO0, reg

COPYI, bb, reg
SWAP, reg, reg
SWAPA, reg
LEFT

RIGHT

FWRITE, reg, floatval

FWRITEA, floatval
FWRITEX, floatval
FWRITEO, floatval
FREAD

FREADA

FREADX

FREADO

ATOF, string
FTOA, bb

FSET, reg

FADD, reg

FSUB, reg

FSUBR, reg

FMUL, reg
FDIV, reg
FDIVR, reg
FPOW, reg
FCMP, reg
FSETO
FADDO
FSUBO
FSUBRO
FMULO
FDIVO
FDIVRO
FPOWO
FCMPO
FSETI, bb
FADDI, bb
FSUBI, bb
FSUBRI, bb
FMULI, bb
FDIVI, bb
FDIVRI, bb
FPOWI, bb
FCMPI, bb
FSTATUS, reg
FSTATUSA
FCMP2, reg, reg
FNEG

FABS

FINV

SORT

ROOT, reg
LOG

LOG10

EXP

EXP10

SIN

COs
TAN
ASIN
ACOS
ATAN

ATAN2,

reg

DEGREES
RADIANS

FMOD,
FLOOR
CEIL

ROUND
FMIN,
FMAX,
FCNV,
FMAC,
FMSC,

reg

reg
reg
bb
reg, reg
reg, reg

LOADBYTE bb
LOADUBYTE bb
LOADWORD wwww
LOADUWORD wwww

LOADE

LOADPI

LOADCON, bval

FLOAT
FIX
FIXR
FRAC

FSPLIT

SELECTMA, reg, bb, bb
SELECTMB, reg, bb, bb
SELECTMC, reg, bb, bb
LOADMA, bb, bb
LOADMB, bb, bb
LOADMC, bb, bb

MOP, bb

Micromega Corporation

42

uM-FPU V3 IDE User Manual

Reference Guide: Assembler

LOADIND, reg LSUBO ADCSCALE, bb
SAVEIND, reg LMULO ADCLONG, bb
INDA, reg LDIVO ADCLOAD, bb
INDX, reg LCMPO ADCWAIT

FCALL, fnum LUDIVO TIMESET

EECALL, fnum LUCMPO TIMELONG

RET LTSTO TICKLONG

BRA, label LSETI, bb EESAVE, reg, bb
BRA, cc, _label LADDI, bb EESAVEA, bb
JMP, _label LSUBI, bb ELOAD, reg, bb
JMP, cc, _label LMULI, bb ELOADA, bb
TABLE, bb LDIVI, bb EEWRITE, bb
FTABLE, bb LCMPI, bb EXTSET

LTABLE, bb LUDIVI, bb EXTLONG

POLY, bb LUCMPI, bb EXTWAIT

GOTO, reg LTSTI, bb STRSET, string
LWRITE, reg, longval LSTATUS, reg STRSEL, bb, bb
LWRITEA, longval LSTATUSA STRINS, string
LWRITEX, longval LCMP2, reg, reg STRCMP, string
LWRITEO, longval LUCMP2, reg, reg STRFIND, string
LREAD LNEG STRFCHR, string
LREADA LABS STRFIELD, bb
LREADX LINC, reg STRTOF

LREADO LDEC, reg STRTOL
LREADBYTE LNOT READSEL
LREADWORD LAND, reg SYNC

ATOL, string LOR, reg READSTATUS

LTOA, bb LXOR, reg READSTR

LSET, reg LSHIFT, reg VERSION

LADD, reg LMIN, reg TIEEEMODE

LSUB, reg LMAX, reg PICMODE

LMUL, reg LONGBYTE, bb CHECKSUM

LDIV, reg LONGUBYTE, bb BREAK

LCMP, reg LONGWORD, wwww TRACEOFF

LUDIV, reg LONGUWORD, wwww TRACEON

LUCMP, reg LONGCON, bb TRACESTR, string
LTST, reg SETOUT, bb TRACEREG, reg
LSETO ADCMODE, bb READVAR, bb
LADDO ADCTRIG RESET

Where:

reg register number (0-127)

fnum Flash function number (0-63)

bb 8-bit value

WWWW 16-bit value

_label address label

cc condition code (%,EQ,Nz,NE,LT,LE,GT,GE,PZ,MZ, INF,FIN,PINF,MINF, NAN, TRUE, FALSE)
floatval floating point value

longval long integer value

string ASCII string

Assembler Directives
The following directives can be used to define byte, word, long and float values.
#BYTE bb 8-bit byte value
#WORD wwww 16-bit word value
#LONG longval long integer value
#FLOAT floatval floating point value

Micromega Corporation 43 uM-FPU V3 IDE User Manual

Reference Guide: Assembler

POLY, 3 POLY instruction with coefficients -0.0000028, 0.0405, -4.0
#float -2.8E-6

#float 0.0405

#float -4.0

The following directives generate code to print to a terminal window (e.g. the built-in terminal window of the target
microcontroller IDE). The commands used for output are defined in the target description file.

#PRINT FLOAT format print floating point value (if no format specified, 0 is assumed)
#PRINT LONG format print integer value (if no format specified, 0 is assumed)
#PRINT FPUSTRING print FPU string

#PRINT STRING string print string constant

#PRINT NEWLINE print new line (e.g. carriage return, linefeed)

Symbol Definitions
All symbols that have been defined by the compiler can be used by the assembler code.

angle EQU F10 symbol definition
#asm

SELECTA, angle symbol used by assembler instruction
#endasm

Branch and Return Instructions
Branch instructions are only valid inside a function. There are four types of branch instructions, and a computed
GOTO instruction.

BRA, <label> branch to label

BRA, <condition code>, <label> if condition code is true, branch to label
JMP, <label> Jjump to label

JMP, <condition code>, <label> if condition code is true, jump to label
GOTO, <register> Jjump the address contained in the register

BRA instructions requires one less byte than the equivalent JMP instructions, but are limited to branching to a label
located at an address -128 bytes or +127 bytes from the next instruction. JMP instructions can branch to any address
in the function. The GOTO instruction jumps to the address specified by the value in a register. If a BRA, JMP, or
GOTO instruction specifies an address that is outside the address range of the function, the function will exit. An
implicit RET instruction is included at the end of all function. RET instructions can also be placed within the
function.

RET return from function
RET, <condition code> if condition is true, return from function

Condition Codes
The condition codes used by various instructions are summarized below.

Symbol Definition Condition Code Status Bits
Z, EQ zero or equal 51 N=0, z=1
NZ,NE non-zero or not equal 50 N=0, Z=0

LT less than 72 N=0, S=1, Z=0
LE less than or equal 62 (special case)

Micromega Corporation 44 uM-FPU V3 IDE User Manual

Reference Guide: Assembler

GT greater than 70 N=0, S=0, Z=0
GE greater than or equal 60 (special case)
PZ plus zero 71 N=0, S=0, Zz=1
MZ minus zero 73 N=0, S5=1, Z=1
INF infinity Cc8 I=1,N=0
FIN finite Cco I=0,N=0
PINF plus infinity E8 I=1,N=0,S=0
MINF minus infinity EA I=1,N=0,S=1
NAN Not-a-Number 44 N=1
TRUE always true 00 (special case)
FALSE always false FF (special case)
Labels

Labels must be at the start of a source code line, and must begin with an underscore character, followed by a number
or by a sequence of alphanumeric characters, terminated by a colon. Labels are local symbols and are only valid in
the function they are defined in. The same label could be used in different functions.

_1:
_loop:
_wait:

Using Branch Instructions and Labels
The following examples demonstrate the use of branch instructions and labels. Psuedocode and the corresponding

FPU assembler code are shown for each example.

If Statement

Psuedocode
if tmp < 10
sum = sum + 1
else
sum = sum + 10
end if
Assembler Code
#asm
SELECTA, tmp if tmp < 10
FCMPI, 10

BRA, GE, 1

SELECTA, sum sum = sum + 1
FADDI, 1
BRA, 2
_1: else
SELECTA, sum sum = sum * 10
FMULI, 10
_2: endif
#endasm

Repeat Statement
Psuedocode
repeat 10 times

Micromega Corporation 45 uM-FPU V3 IDE User Manual

Reference Guide: Assembler

sum = sum + 1

Assembler Code

#asm
SELECTA, cnt
LSETI, 20

_loop:
SELECTA, sum
FADDI, 1

LDEC, cnt
BRA, GT, _loop
#endasm

For Statement
Psuedocode
for cnt = startValue to endValue
sum = sum + 1
next

Assembler Code
#asm

SELECTA, cnt
LSET, startValue

_loop:
SELECTA, sum
FADDI, 1

LINC, cnt

LCMP2, cnt, endValue

BRA, LT, _loop
#endasm

String Arguments

set loop counter to 20

sum = sum + 1

decrement loop counter
repeat until done

set loop counter to start value

sum = sum + 1

increment loop counter
check for end value
repeat until done

Several options are provided for assembler instructions that require a string argument. The simplest form is to use a
string constant. The assembler will automatically add a zero terminator as required.

STRSET, "test"

Special characters can be entered using a backslash followed by two hexadecimal digits.

STRSET, "linel\OD\OAline2"

add carriage return, linefeed between linel and line2

The assembler will also form a string by concatenating multiple string and byte constants.

STRSET, "linel", 13, 10, "line2"
An empty string can be specified in two ways.

STRSET, ""
STRSET, 0

results in the same string as above

empty string

Micromega Corporation 46

uM-FPU V3 IDE User Manual

Reference Guide: Assembler

Table Instructions

The TABLE, FTABLE, LTABLE, and POLY instructions are only valid inside functions. These instructions specify a
count of the number of additional arguments, and the additional arguments are added using the #FLOAT or #LONG
directives.

TABLE, 4 load value from table
#FLOAT 10.0

#FLOAT 20.0

#FLOAT 50.0

#FLOAT 100.0

POLY, 3 POLY instruction with coefficients -0.0000028, 0.0405, -4.0
#float -2.8E-6

#float 0.0405

#float -4.0

MOP Instruction

The IDE doesn’t provide high level support for matrix operations, they must be specified using assembler. There are
predefined symbols for the matrix operations that can be used with the MOP instruction. For example the following
instructions initialize all elements of a 2x2 matrix to 1.0.

#asm
SELECTMA, 10, 2, 2
LOADBYTE, 1
MOP, SCALAR SET
#endasm

A list of the predefined symbols for matrix operations are as follows:

0 SCALAR_SET 21 SUM

1 SCALAR_ADD 22 AVE

2 SCALAR_SUB 23 MIN

3 SCALAR_SUBR 24 MAX

4 SCALAR MUL 25 COPYAB

5 SCALAR DIV 26 COPYAC

6 SCALAR DIVR 27 COPYBA

7 SCALAR_POW 28 COPYBC

8 EWISE SET 29 COPYCA

9 EWISE ADD 30 COPYCB

10 EWISE SUB 31 DETERM

11 EWISE SUBR 32 INVERSE
12 EWISE MUL 33 ILOADRA
13 EWISE DIV 34 ILOADRB
14 EWISE DIVR 35 ILOADRC
15 EWISE POW 36 ILOADBA
16 MULTIPLY 37 ILOADCA
17 IDENTITY 38 ISAVEAR
18 DIAGONAL 39 ISAVEAB
19 TRANSPOSE 40 ISAVEAC
20 COUNT

Micromega Corporation 47 uM-FPU V3 IDE User Manual

Reference Guide: Debugger

Reference Guide: Debugger

Utilizing the built-in debug monitor on the uM-FPU V3 chip, the IDE provides a high-level interface for debugging
programs that use the uM-FPU V3 floating point coprocessor. It supports the ability to trace uM-FPU instructions,
set breakpoints, single-step through execution of uM-FPU instructions, and display the value of uM-FPU registers.
The IDE includes a disassembler so that instruction traces are displayed in easy-to-read assembler format.

Making the Connection
For debugging, the uM-FPU V3 IDE must have a serial connection to the uM-FPU V3 chip. Refer to the section at
the start of this document called Connecting to the uM-FPU V3 chip.

Debug Window
Register Display

Button Bar Selected Name Hex Value Formatted Value

Debug Trace

@2 uM-FPU V3 IDE

File Edit Debug Functions Tools Help
tutoriall .fpu | Output | Debug | Functions | Serial IjO
Go Step Auto|Step Trace hegisters [Read Regish}(s][Clear]
_______________________________________ ~ 40490FDB_3.141593
RESET: 2010-04-13 16:36:32 Rl JFFFFFFF Nal
__ R2 7FFFFFFF_Nal
FO5C SYNC: |92 R3 7FFFFFFF Nal 3
F3 VERSION R4 7FFFFFFF Nal
F2754D2D4650 READSTR: "uM-FPU ¥3.1.2" R3 JFFFFFFE Nal
552056332E31 RE JFFFFFFE Nall
2E3200 R7 7FFFFFFF Nal
0104 SELECTA, Radius RE 7FFFFFFF Nal
5B0000 LOADWORD, 0 R3 : JFFFFFFF Nal
29 FSETO Rl0 Radius 00000000 0.0
SEO3ES LOADWORD, 1000 R1l Diameter 00000000 0.0
oF IV RlZ Circumference 00000000 0,0
010B SELECTA, Diameter A R13 Area 00000000 0.0
2004 FSET, Radius R14 JFFFFFEF Nal
3602 FULI, 2 RLS 7FFFFFFF _Nal
o0l0c SELECTA, Circunference R16 IFFFFFFF Nall
SE LOADPI R17 7FFFFFFF _Nal 2
29 FSETO e - 2 e
240B FMUL, Diameter Temporary Registers
010D SELECTA, Area Tl 7FFFFFFF _Nal ~
SE LOADPI T2 7FFFFFFF _Nal
29 FSETO T3 7FFFFFFF _Nal
2404 FMUL, Radius T4 7FFFFFFF Nal
2404 FMUL, Radius TS 7FFFFFFF Nal
b T6 7FFFFFFF Nall v
String Length: 13 String Selection: 0, 13 Status: 00 ----
®
B PP 302 :
0 5 10
COM4-57600-8-N-1 Reset
1 T
Connection Status String Buffer Status Message Status Byte

The Debug Trace displays messages and instruction traces. The Reset message includes a time stamp, is is
displayed whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled.
This can be enabled at Reset by setting the Trace on Reset option in the Functions>Set Parameters... dialog,

Micromega Corporation

48

uM-FPU V3 IDE User Manual

Reference Guide: Debugger

or at any time by sending the TRACEON instruction.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

The Go, Stop, Step and Trace buttons at the top left control the breakpoint and trace features, and the connection
status is displayed at the lower left of the window.

Trace Buffer
The scrolling window on the left of the debug window displays the debug trace output. When a Reset occurs a
message is displayed showing the date and time of the Reset.

RESET: 2006-11-28 13:19:31

Tracing is turned off at Reset, unless the Trace on Reset parameter has been set. Tracing can be controlled by the

program using the TRACEON and TRACEOFF instructions, or manually with the Trace button. If tracing is enabled,
all FPU instructions are displayed as they are executed. The opcode and data bytes are displayed on the left, and the

FPU instructions are displayed on the right in assembler format.

TRACE: ON
0104 SELECTA, 4
5E LOADPI
29 FSETO
2401 FMUL, 1
2401 FMUL, 1
1F3F FTOA, 63
F232302E3833 READSTR: "20.831"
3100

The Trace button toggles the trace mode on and off.
Clicking the Clear button above the Debug Trace window will clear the contents of the Debug Trace window.

Breakpoints

Breakpoints can be inserted into a program using the BREAK instruction, or initiated manually with the Stop button.
Breakpoints occur after the next FPU instruction finishes executing. When a breakpoint occurs, the last FPU
instruction executed before the breakpoint is displayed, followed by the break message, and the register display is
updated. Register values are displayed in red if the value has changed since the last time the display was updated, or
black if the value is unchanged.

5E LOADPI
BREAK

The Go, Stop, and Step buttons are enabled or disabled depending on the current state of execution. The Go
button is used to continue execution, and is enabled at Reset or after a breakpoint occurs. The Stop button is used to
stop execution after the next FPU instruction is executed. If the uM-FPU is idle when the Stop button is pressed,
the breakpoint will not occur until the next uM-FPU instruction is executed. If the FPU is already at a breakpoint,

Micromega Corporation 49 uM-FPU V3 IDE User Manual

Reference Guide: Debugger

then the Stop button will be disabled. The Step button is used to single step through instructions, with a new
breakpoint occurring after each instruction.

The Register Panel

The register panel displays the value of each register and indicates the register currently selected as register A and
register X. Register A and register X are indicated by an A and X marker in the left margin of the register panel. The
temporary registers are displayed at the bottom on the register panel.

For each register, the register number, optional register name, hexadecimal value, and formatted value is displayed.
If you click on the formatted value, a pop-up menu is displayed with the register value displayed in floating point,
long integer, and unsigned long integer format. If you select a different format, the display will be updated to show
that format.

[Read Reqisters][Clear J

Registers
X RO 40490FDE 3.141593 ~
R1 tupl T7FFFFFFF Nall
R2 7FFFFFFF Nall
R3 TFFFFFFF Nall
R4 7FFFFFFF Nall
RS T7FFFFFFF Nall
RE T7FFFFFFF Nall
R7 T7FFFFFFF Nal
RE T7FFFFFFF Nall
R9 T7FFFFFFF Nall
REO..Rodiua Float 2.575
Rll Diameter Loneg 1076153549
Rl1Z2 Circumferenc Unsigned 1076153549
A R13 Area d1A6A553 20.83072
r1A TFFFFFFF Wall

Register names are automatically set from the register definitions in the source file. Registers can often have several
different names assigned. If you click on the register name, a pop-up menu is displayed showing all of the names for
that register. If you select a different name, the display will be updated to show that name.

Registers [Read Reqisters] [Clear]
X RO 40490FDE 3.141593 N
......... Rl . twpl tmpl F NaN
paraml F NaN
.’l'l'l'.l'].'l'F Nahl

ATTTTTTET AT~

The current register values are automatically updated after every breakpoint. The Read Registers button can also
be used to manually force an update of the register values. Register values are displayed in red if the value has
changed since the last time the display was updated, or black if the value is unchanged.

Error messages

<data error>

The IDE communicates with the uM-FPU V3 chip using a serial connection. If the IDE detects an error in the data
received from the FPU, the data error message is displayed in the Debug Trace. This can sometimes occur
immediately before a Reset, if the reset interrupts a trace operation in progress. This situation can be ignored. If it
occurs at other times it indicates a problem with the serial communications. The trace in the Serial /O window can

Micromega Corporation 50 uM-FPU V3 IDE User Manual

Reference Guide: Debugger

be reviewed and may help determine the source of the problem.

<trace suppressed>

In certain circumstances, the FPU is capable of sending data faster than the PC can handle it. If this occurs, the trace
suppressed message is displayed, and the IDE attempts to recover by suppressing data, resynchronizing, and
continuing. This situation should not normally occur, but can occur if excessive amounts of trace data are being
produced such as tracing a user-defined function that is looping. To avoid this situation, the TRACEOFF and
TRACEON instructions can be used to selectively disable tracing.

<trace limit xx>

The IDE will retain up to 100,000 characters in the Debug Trace. This is normally more than sufficient for tracing
and debugging. The Debug Trace buffer can be cleared with the Clear button. If the buffer is exceeded, the first
portion will be deleted, and the trace limit message displayed in its place. The trace limit messages are numbered
sequentially. This message does not necessarily indicate an error, unless it occurs in conjunction with one of the
messages described above.

Micromega Corporation 51 uM-FPU V3 IDE User Manual

Reference Guide: Auto Step and Conditional Breakpoints

Reference Guide: Auto Step and Conditional Breakpoints

The Auto Step feature provides a means to automatically single step through FPU instructions. This feature, in
conjunction with Auto Step Conditions, can be used to implement conditional breakpoints. Conditional breakpoints
stop instruction execution when one of the specified conditions occur. Breakpoints can be set for a variety of
conditions including: when a particular instruction is executed, when a user-defined functions is called, when a
specified number of instructions have been executed, when a register value changes or matches a particular
expression, or when a string comparison matches a particular condition. Multiple conditions can be specified, and a
breakpoint will occur when any of the conditions is met.

Conditional breakpoints are only active when the Auto Step operation is used. They are not active when the Go or
Step operation is used. Instruction execution is much slower using Auto Step since an internal breakpoint occurs
for each instruction, and the debug trace and register data are checked for Auto Step Conditions.

Auto Step is activated by clicking the Auto Step button, or selecting the Debug > Auto Step menu item.

Auto Step Conditions are set by right-clicking the Auto Step button, or selecting the Debug > Auto Step
Conditions menu item. The Auto Step Conditions can also be set to appear each time the Auto Step button is
pressed.

Auto Step Conditions Dialog

Auto Step Conditions

Break on Instruction

J Instruction: | v

Break on FCALL
[l Function: | <any function> v

(®breakoncall O break on return

Break on Count

E] Instruction Count:

Break on Reaqister Change

D Reqgisters:

Break on Expression
E] V|| = v |0 v

Break on String

] iequals v
(@ string O Selection

Always display this dialog before Auto Step

[Clear Break Conditions] [QK] [Cancel

Micromega Corporation 52 uM-FPU V3 IDE User Manual

Reference Guide: Auto Step and Conditional Breakpoints

Break on Instruction
This condition causes a breakpoint when a particular instruction is executed. The instruction is specified using

assembler format as shown below.

Break on Instruction

Instruction: SELECTA v

The opcode can be selected from a pop-up menu,

Break on Instruction
] Instruction: W

ACOS AP
ADCLOAD
ADCLONG
ADCMODE
ADCSCALE
ADCTRIG
ADCWAIT
ALOADX
ASIN
ATAN

or the opcode can be typed in the field. An auto-complete feature is provided to assist in typing the opcode.

Break on Instruction

Instruction: |se| v

SELECTA
SELECTMA
SELECTMBE
SELECTMC
SELECTX

Break on FCALL
This condition causes a breakpoint when a user-defined function is called, or when it returns.

Break on FCALL
Function: |6 - drawlineGraph v

@ breakoncal O break on return

The function is selected from a pop-up menu. The menu has all of the function numbers. If functions have been
defined in the current source file, and compiled, the function name is also displayed in the menu. The special item
<any function> can also be selected to cause a breakpoint on any function call.

Micromega Corporation 53 uM-FPU V3 IDE User Manual

Reference Guide: Auto Step and Conditional Breakpoints

Break on FCALL

Function: | <any function ;

0 - getID

1 - getDistance

2 - getLocation

3 - getLatLong

4 - radiansToDM

S - readNMEA

6 - parseGPRMC

7 - NME&A_Deagrees
8
9
10

Break on Count
This condition causes a breakpoint after a specified number of instructions has executed.

Break on Count
Instruction Count: 100

Break on Register Change
This condition causes a breakpoint when the value changes in one of the specified registers.

Break on Register Change
Registers: |1,3-10,20:2

Multiple registers can be specified separated by commas. A register can be specified as:
e asingle register value (e.g. 1)
e arange of register values (e.g. 3-10 which selects registers 3 through 10)
e an array of register values (e.g. 20:2 which selects two registers starting at registers 20)

If register names have been defined in the current source file, and compiled, the names can also be used.

Break on Expression
This condition causes a breakpoint whenever the expression is true.

Break on Expression
| lat1 vil= |0 v

The left side of the expression must be a register. A register number can be typed in, or if registers have been defined
in the current source file, and compiled, a pop-up menu can be used.

Break on Expression
|:] | v = v |0 V|
lat1

long1

lat2
long2

Micromega Corporation 54 uM-FPU V3 IDE User Manual

Reference Guide: Auto Step and Conditional Breakpoints

The operator used by the expression is chosen from the middle pop-up menu

Break on Expression

[lat1 -

The operators are as follows:

= equal

<> not equal

> greater than

>= greater than or equal
< less than

<= less than or equal
=~ approximately equal

The approximately equal operator is used for floating point values. The condition is true if the register value is
greater than (value - 0.000001) and less than (value + 0.000001).

The left side of the expression can be any value. The value can be typed in or the pop-up menu can be used for
predefined values.

Break on Expression

| lat1 vil= ~| |3 v
-Infinity

-1000000

-1000

-100

-10

-pi

pi

10

100
1000
1000000
+Infinity
Mal

Micromega Corporation 55 uM-FPU V3 IDE User Manual

Reference Guide: Auto Step and Conditional Breakpoints

Break on String
This condition causes a breakpoint if the string comparison is true.

Break on String
| starts with v (31

®string O Selection

The string comparison can either be the entire string buffer, or the current string selection. The comparison operator
is selected from the left pop-up menu, and the string to compare is entered in the field on the right.

Break on String
O equals

The comparisons for length require a decimal number to be entered in the field on the right. The comparisons for
selection, length require two decimal numbers separated by a comma to be entered in the field on the right.

Micromega Corporation 56 uM-FPU V3 IDE User Manual

Reference Guide: Programming Flash Memory

Reference Guide: Programming Flash Memory

The Function window provides support for storing user-defined functions on the uM-FPU V3 chip. Stored
functions can reduce memory usage on the microcontroller, simplify the interface and often increase the speed of
operation. The uM-FPU V3 reserves 2048 bytes of flash memory for user-defined functions and parameters (plus
256 bytes for the header information). Functions are stored as a string of FPU instructions, and up to 64 functions
can be defined. Functions are specified in the source file by using the #FUNCTION directive. See the section entitled
Reference Guide: Generating uM-FPU V3 Code for more details.

Function Window

Function List

Name New Size Stored Size Compare New Function Code Button Bar

@2 uM-FFPU V3 IDE

File Edif Debug Functidgs Tools Help

GCdistance.fpu | Output Debl Functions \Serial IjO

Functign List: \ \ MNew Function 7: NMEA |Degrees l

Hame New Stored = 0000 LEFT ~ [ReadStored Functions |
0 getID 2 bytes 2 bytes Yes ~ (0001 STRFIELD, (129
1 getDistance 42 bytes 42 bytes Yes 0003 STRTOL
2 getLocation 181 bytes 181 bytes Yes 0004 LSETO .
3 getLatLong 67 bytes 67 bytes Yes 0005 LDIVI, 100 L Program Functions J
4 radiansToDM 38 bytes 38 bytes Yes 0007 FLOAT .)
& readlMEL 32 bytes 32 bytes Yes 0008 LEFT [] Overwrite Stored Functions
6 parseGPRMC 18 bytes 18 bytes Yes 0009 STRFIND, "." @ always

; """" WHER. Degrses H.byes.. A2 pakes.. a8 gggg g%gg O Confirm with User
9 000E READVAR, 15 O Never
10 0010 STRSEL, 128, 7
11 0013 STRTOF
12 0014 FSETO
13 0015 FDIVI, 60
14 nN17 RTRHT ¥
ig Stored Function 7: <read from FPU>
17 0000 LEFT A
15 0001 STRFIELD, 129
19 0003 STRTOL
20 0004 LSETO
21 0o0s LDIVI, 100
22 0007 FLOAT
23 0008 LEFT
24 0008 STRFIND, "."
25 000C STRDEC
26 000D STRDEC ®
27 O00E READVAR, 15
28 0010 STRSEL, 128, 7
29 0013 STRTOF
30 0014 FSETO
31 0015 FDIVI, 60

35 ¥ lnmi7? wTRET b

COM4-57600-8-N-1 Compiled successfully For BASIC Stamp - SPI
1 1
Connection Status Status Message Stored Function Code

The Function List provides information about each function defined by the compiler and stored on the FPU. The
Name column in the Function List displays the name of all functions defined in the source file. The New column
shows the size in bytes of the functions defined in the source file, and the Stored column displays the size in bytes
of functions currently stored on the FPU (if the functions have been read). The = column displays Yes if the new
and stored functions are the same, or No if they are different.

Micromega Corporation 57 uM-FPU V3 IDE User Manual

Reference Guide: Programming Flash Memory

The New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code
displays the FPU instructions for functions stored on the FPU. The function to be displayed is selected by selecting
one of the functions in the Function List.

The Read Stored Functions button is used to read the functions currently stored on the FPU and update the
Function List.

The Program Functions button is used to program new functions to the uM-FPU V3 chip. If a newly defined
function is different then the currently stored functions, the action taken is determined by the Overwrite Stored
Functions option.

Owenwrite Stored Functions
() Bilways

(7 Confirm with U ser
(=) Never

If the Always option is selected, a new function will always overwrite any previously stored function.

If the Confirm with User option is selected, you are asked to confirm whether a new function should replace the
previously stored function.

If the Never option is selected, new functions are not allowed to replace previously stored functions.

Micromega Corporation 58 uM-FPU V3 IDE User Manual

Reference Guide: Setting uM-FPU V3 Parameters

Reference Guide: Setting uM-FPU V3 Parameters

The Set Parameters... menu item is used to set the uM-FPU V3 mode parameter bytes.

Set Parameters Dialog

Set Parameters

[]Break on Reset

[]Enable Busy/Ready Status on OUT1

[Juse PIC format {IEEE 754 is default)

Idle Mode Power Saving Enable

[sleep Mode Power Saving Enabled
Interface Mode

(3) CS pin selects interface (default)

() 12C interface (CS pin ignored)

() SPIinterface (CS pin used as chip select)

12C Address: | CB |
Auto-Start Mode
If CS pin is Low at Reset:
[]pisable Debug
[]call Function: |

[Restore Default Settings]

[OK] [Cancel]

Break on Reset
If this option is selected, a breakpoint will occur on the first instruction following a Reset.

Trace on Reset
If this option is selected, debug tracing is turned on at Reset.

Use PIC Format (IEEE 754 is default)

If this option is selected, the PIC format will be used for reading and writing floating point values. The uM-FPU V3
chip uses floating point values that conform to the IEEE 754 32-bit floating point standard. This is also the default
format for reading and writing floating point values in FPU instructions. An alternate PIC format is often used by
PICmicro compilers. If this option is selected, floating point values are automatically translated between the PIC
format and the IEEE 754 format whenever values are read from the FPU or written to the FPU, and the
microcontroller program can use the PIC format. The IEEEMODE and PICMODE instructions can also be used to
dynamically change the format. For additional information regarding the ITEEEMODE and PICMODE instructions,
see the uM-FPU V3 Instruction Reference.

Micromega Corporation 59 uM-FPU V3 IDE User Manual

Reference Guide: Setting uM-FPU V3 Parameters

Note: The IDE code generator currently only generates code for the default IEEE 754 format. If
the PIC format is used you will need to fix the data values in the code generated for FWRITE,
FWRITEA, FWRITEX and FWRITEO instructions.

Idle Mode Power Saving Enable
If this option is selected, the uM-FPU V3 chip will go into a low power mode when idle.

Sleep Mode Power Saving Enabled
If this option is selected, the uM-FPU V3 chip will go to sleep when idle and the chip is not selected. This mode is

only active if the interface mode is SPI with the CS pin used as a chip select.

Interface Mode

By default, the CS pin on the uM-FPU V3 chip is read at Reset to determine if the SPI or I?C interface is to be used.
The interface mode parameter can be used to force selection of SPI or I>C at Reset (ignoring the CS pin), or to
specify SPI mode with the CS pin acting as a chip select.

Note: Most of the SPI support software currently supplied by Micromega assumes that no chip
select is used. If the chip select option is enabled, you must ensure that the CS pin is being handled
properly. If SPI is used without chip select, the CS pin must be tied low.

12C Address

By default, the I>C address used by the uM-FPU V3 chip is C8 (hexadecimal) or 1100100x (binary). If the default
address conflicts with another I’C device, or if multiple uM-FPU V3 chips are used on the same I*C bus, the address
can be changed to any other valid I?C address. The address is entered as an 8-bit hexadecimal number (with the
lower bit ignored). A value of 00 will select the default C8 address.

Auto-Start Mode

A user-defined function can be called and Debug Mode can be disabled when the FPU is Reset. If the Disable
Debug option is selected, Debug Mode will be disabled at Reset. This is useful if the SERIN and SEROUT pins are
being used for other purposes (e.g. GPS input, LCD output) and prevents the {RESET } message from being sent to
the SEROUT pin at Reset. If the Call Function option is selected, the specified function will be called at Reset.

These options are only checked if the CS pin is Low at Reset. If both the CS pin and SERIN pin are High at Reset,
the auto-start function is not called, and Debug Mode will always be entered. This provides a way to override the
auto-start mode once it is set. To use auto-start with an I’C interface, the interface mode bits must be set to I?C (as
described above). It’s recommended that the interface be set to SPI or I?C using the interface bits whenever auto-
start mode is used, so that the CS pin can be used to enable or disable the auto-start mode.

Restore Default Settings
This button restores the parameters to the following default settings:

Break on Reset not enabled

Trace on Reset not enabled

Enable Busy/Ready Status on OUT1 not enabled

Use PIC format (IEEE 754 is default) not enabled

Idle Mode Power Saving enabled

No Sleep Mode Power Saving not enabled

Interface Mode CS pin selects interface (default)
[2C address c8

Auto-Start Mode>Disable Debug not enabled

Auto-Start Mode>Call Function not enabled

Micromega Corporation 60 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

Reference Guide: Target Description File

Target description files are used to customize the compiler output for a specific microcontroller development
language. The IDE supports a wide range of microcontrollers, and a set of predefined target description files are
included with the IDE. The system target files are installed and loaded from the following folder:

~\Program Files\Micromega\uM-FPU V3 IDE rxxx\Target Files

(where rxxx is the IDE software revision number)

User target files are loaded from the following folder:
\My Documents\Micromegal\Target Files

Users can create their own target description files. Target files are text files that can be created and edited with any
text editor. The file should then be copied to the user target folder to be loaded when the IDE starts.

The target file contains a series of commands to define how the compiler will generate code for a particular target.
To be recognized by the IDE as a target description file, the first line of the file must contain the TARGET _NAME
command.

A sample target description file is shown below.

TARGET NAME=<Generic C compiler>
; This file defines code generation for a C compiler

MAX LENGTH=<80>
MAX WRITE=<6>

TAB SPACING=<-4>

COMMENT PREFIX=<//>
SOURCE_PREFIX=<{t}// >

HEX FORMAT=<0x{byte}>

STRING HEX FORMAT=<\x{byte}>

WRITE=<{t}fpu write{nl} ({byte});>

WRITE BYTE FORMAT=<{byte}>

WRITE WORD=<{t}fpu writeWord({word}) ;>

WRITE LONG=<{t}fpu writeLong({long});>

WRITE FLOAT=<{t}fpu writeFloat({float});>
WRITE STRING=<{t}fpu writeChar("{string}");>
WAIT=<{t}fpu wait();>

READ BYTE=<{t}{name} = fpu read();>

READ WORD=<{t}{name} fpu readword() ;>
READ LONG=<{t}{name} = fpu readLong();>
READ FLOAT=<{t}{name} = fpu readFloat();>

REGISTER DEFINITION=<#define {name}{t}{register}>
BYTE DEFINITION=<int {name};>
WORD_DEFINITION=<long {name} ;>
LONG_DEFINITION=<int32 {name};>

FLOAT DEFINITION=<float {name};>

PRINT FLOAT=<{t}print float({byte}):;

{t}print CRLF() ;>

PRINT LONG=<{t}print long({byte});

{t}print CRLF();>

PRINT FPUSTRING=<{t}print fpuString(READSTR);
{t}print CRLF();>

Micromega Corporation 61 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

PRINT NEWLINE=<{t}print CRLF();>
PRINT STRING=<{t}printf({string});
{t}print CRLF();>

Syntax

The general format of a command is as follows:

COMMAND=<ARGUMENT>

The name of the command is specified first, followed by an equal sign and the argument surrounded by < >
characters. The following command defines the target name.

TARGET_NAME=<Generic C compiler>

Arguments can extend over multiple lines, and have replaceable parameters. Parameters are special keywords
surrounded by { } characters. The following command specifies how to write a 16-bit word value to the FPU. The
{byte} parameter is replaced by the actual value when the code is generated.

WRITE WORD=< lda {byte}
jsr fpu write
1da {byte}+1
jsr fpu write>

Tab Spacing

The <tab> character, or {t} and {tn} parameters, can be used to align the output to particular character positions.
They can be inserted into any of the output commands. The <fab> character and {t} parameter will insert <space>
characters until the next character position is a multiple of the value specified by the TAB_SPACING command. If
the value specified by TAB_ SPACING is positive, only spaces are used to move to the next tab position. If the value
is negative, then both <space> and <tab> used to move to the next tab position. The {tn} parameter will insert
characters until the character position equals the value specified. If the output is already at a position greater than the
character position specified, a single <space> or <tab> will be output.

Commands
A target description file only needs to contain those commands that are necessary to define the output for a particular
target. There are default values for many of the commands. The available commands are as follows:

TARGET_NAME WRITE

MAX_LENGTH
MAX_WRITE

TAB SPACING
DECIMAL_ FORMAT
HEX_FORMAT
STRING_HEX FORMAT
OPCODE_PREFIX
COMMENT PREFIX
SOURCE_PREFIX
SEPARATOR
CONTINUATION

START WRITE TRANSFER
START_READ TRANSFER
STOP_TRANSFER

WAIT

WRITE_BYTE FORMAT
WRITE_WORD_ FORMAT
WRITE_LONG_ FORMAT
WRITE_FLOAT FORMAT
WRITE_STRING_FORMAT

WRITE BYTE
WRITE_WORD
WRITE_LONG
WRITE_STRING

READ DELAY
READ_BYTE
READ_WORD
READ LONG
READ FLOAT

Micromega Corporation 62

uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

REGISTER DEFINITION PRINT_ LONG

BYTE DEFINITION PRINT FPUSTRING
WORD_DEFINITION PRINT NEWLINE
LONG_DEFINITION PRINT STRING

FLOAT DEFINITION
RESERVED_ PREFIX
PRINT FLOAT RESERVED_WORD

A detailed description of each command is provided at the end of the section.

Reviewing the Sample File
To better understand target description files, we’ll take a closer look at the sample target description file shown at the
start of this section.

In order to be recognized as a target description file, the first line of the file must contain the TARGET NAME
command. It specifies the name of the target as it will appear in the Target Menu of the Source Window.

TARGET NAME=<Generic C compiler>

The next section defines the maximum output line length, number of bytes per write statement, and prefix characters
for comments and hex values.

MAX LENGTH=<80> maximum line length of 80 characters
MAX WRITE=<6> maximum of 6 bytes per write statement
TAB SPACING=<-4> use <tab> characters, 4 character per tab
COMMENT PREFIX=<//> comments have / / prefix
SOURCE_PREFIX=<{t}// > source code has <tab>// prefix

HEX_ FORMAT=<0x{byte}> hex values have 0x prefix

STRING_HEX FORMAT=<\x{byte}> hex string characters have \x prefix

The next two commands specify the format for writing out bytes. The WRITE command uses three parameters. The
{t} will be replaced by a <tab> character. The {n1} is replaced by the number of bytes in the write statement (or
the empty string if the write statement has only one byte. The {byte} argument is replaced by up to six bytes (set
by MAX WRITE). The format for the byte value is determined by the WRITE_BYTE FORMAT command, and is just
the value itself with no additional prefix or suffix.

WRITE=<{t}fpu write{nl}({byte});>
WRITE BYTE FORMAT=<{byte}>

An example of the output generated by these commands is as follows:
fpu write2 (SELECTA, temp);
fpu write(CLRA);

Next are the commands for writing out word, long, float and string values. In this example, each of these are defined
to use a separate function call. In other cases, the values could be output using the WRITE command by defining a a
format command instead of a separate function call (i.e. WNRITE WORD_ FORMAT instead of WRITE WORD).

WRITE WORD=<{t}fpu writeWord({word}) ;>
WRITE LONG=<{t}fpu writeLong({long});>

Micromega Corporation 63 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

WRITE_FLOAT=<{t}fpu writeFloat({float});>
WRITE STRING=<{t}fpu writeChar("{string}");>

An example of the output generated by these commands is as follows:
fpu writeWord(1000);
fpu writeLong(value);
fpu writeLong(100.25);
fpu writeString("Result: ");
The WAIT command specifies the function to call to wait for the FPU ready status.

WAIT=<{t}fpu wait();>

The commands for reading data values are shown below.

READ BYTE=<{t}{name}
READ WORD=<{t}{name} fpu readword() ;>
READ LONG=<{t}{name} fpu readLong();>
READ FLOAT=<{t}{name} = fpu readFloat();>

fpu read();>

An example of the output generated by these commands is as follows:
tmp = fpu_ read();
cnt fpu readwWord();
sum = fpu readLong();
angle = fpu readFloat();

The following command specifies how registers are defined .
REGISTER DEFINITION=<#define {name}{t}{register}>

An example of register definitions is as follows:

#define angle 10
#define latl 11

Next are the commands to define microcontroller variable.

BYTE DEFINITION=<int {name};>
WORD DEFINITION=<long {name};>
LONG_DEFINITION=<int32 {name};>
FLOAT DEFINITION=<float {name};>

An example of the output generated by these commands is as follows:
int cnt;
long sum;
float angle;

Finally, the commands to define print statement.

PRINT FLOAT=<{t}print float({byte}):
{t}print_CRLF();>

Micromega Corporation 64 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

PRINT LONG=<{t}print long({byte});

{t}print CRLF();>

PRINT FPUSTRING=<{t}print fpuString(READSTR);
{t}print CRLF();>

PRINT NEWLINE=<{t}print CRLF();>

PRINT STRING=<{t}printf({string});

{t}print CRLF();>

An example of the output generated by these commands is as follows:
print float(angle);
print CRLF();

Reserved Words

The IDE code generator uses symbolic values for the FPU opcodes. Some microcontroller languages may need a
prefix for the opcodes, or some FPU opcodes may conflict with reserved names in the microcontroller language. For
example, an object-oriented language like Java requires a module prefix for all constants. The OPCODE_PREFIX
command can be used to add a prefix to all opcodes.

OPCODE_PREFIX=<Fpu.>

An example of the opcodes generated is as follows:
Fpu.SELECTA
FPU.FADD

Other languages may have only a few reserved words that conflict with the FPU opcodes. The RESERVED_WORD
command is used to identify these words, and the RESERVED_PREFIX command defines a prefix to make them
unique. The following example adds an F_ prefix to three reserved words, the other opcodes would be unaffected.

RESERVED PREFIX=<F_ >
RESERVED WORD=<SIN>
RESERVED WORD=<COS>
RESERVED WORD=<TAN>

An example of the opcodes generated is as follows:
SELECTA
FADD
F_SIN
F_COS

Micromega Corporation 65 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

Target Description Commands

BYTE_DEFINITION Define byte variable definition
BYTE_DEFINITION=<string>

Default: empty string

Parameters: {byte}

Example: BYTE_DEFINITION=<char {name};>

Description: This command defines the instruction sequence used to define an 8-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

COMMENT_PREFIX Set the prefix for comments
COMMENT_PREFIX=<string>

Default: ; (semi-colon)

Parameters: none

Example: COMMENT PREFIX=<//>

Description: This command defines the prefix characters used before a comment.
CONTINUATION Define line continuation for WRITE command

CONTINUATION=<string>

Default: empty string
Parameters: none
Example: CONTINUATION=< _
>
Description: This command sets the continuation sequence used for continuing the WRITE command

instructions on multiple lines. If the CONTINUATION command is set to an empty string, no line
continuation is allowed.

DECIMAL_FORMAT Set the prefix for decimal numbers
DECIMAL_FORMAT=<string>

Default: empty string

Parameters: {byte}

Example: DECIMAL_ FORMAT=<.{byte}>

Description: This command sets the prefix character for decimal numbers.

Micromega Corporation 66 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

FLOAT_DEFINITION Define float variable definition

FLOAT_DEFINITION=<string>

Default: empty string

Parameters: {name}

Example: FLOAT DEFINITION=<float {name};>

Description: This command defines the instruction sequence used to define a 32-bit floating point variable. A

<carriage return> and <linefeed> is appended to the end of the output.

HEX_FORMAT Set the prefix for hexadecimal numbers
HEX_FORMAT=<string>

Default: $ (dollar sign)

Parameters: {byte}

Example: HEX_ FORMAT=<0x{byte}>

Description: This command sets the prefix character for hexadecimal numbers.
LONG_DEFINITION Define long variable definition
LONG_DEFINITION=<string>

Default: empty string

Parameters: none

Example: LONG_DEFINITION=<long {name};>

Description: This command defines the instruction sequence used to define a 32-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

MAX_LENGTH Set maximum length of write instruction

MAX_LENGTH=<length>

Default: 80

Parameters: none

Example: MAX_LENGTH=<90>

Description: This command defines the maximum length of a source line.

MAX_WRITE Set maximum number of bytes in write instruction

MAX_WRITE=<n>

Default: 1

Parameters: none

Example: MAX WRITE=<8>

Description: This command defines the maximum number of bytes in a write command.

Micromega Corporation 67 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

OPCODE_PREFIX Set the prefix for opcodes in WRITE command
OPCODE_PREFIX=<string>

Default: empty string

Parameters: none

Example: OPCODE_PREFIX=<FPU >

Description: This command sets the prefix for opcodes used in write_command. It can be used in conjunction

with a symbol definition file to ensure unique names for the opcode constants.

PRINT_FLOAT Define instructions to print float value

PRINT_FLOAT=<string>

Default: empty string
Parameters: {byte}
Example: PRINT FLOAT=<format = {byte}

GOSUB PRINT_FLOAT>

Description: This command defines the instruction sequence to print a 32-bit floating point value. A <carriage
return> and <linefeed> is appended to the end of the output.

PRINT_FPUSTRING Define instructions to print FPU string
PRINT_FPUSTRING=<string>

Default: empty string

Parameters: none

Example: PRINT FPUSTRING=<GOSUB PRINT FPUSTRING>

Description: This command defines the instruction sequence to print FPU string. A <carriage return> and

<linefeed> is appended to the end of the output.

PRINT_LONG Define instructions to print long value

PRINT_LONG=<string>

Default: empty string
Parameters: {byte}
Example: PRINT FLOAT=<format = {byte}

GOSUB PRINT_LONG>

Description: This command defines the instruction sequence to print a 32-bit integer value. A <carriage
return> and <linefeed> is appended to the end of the output.

Micromega Corporation 68 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

PRINT_NEWLINE Define instructions to print new line
PRINT_NEWLINE=<string>

Default: empty string

Parameters: none

Example: PRINT NEWLINE=<DEBUG CR>

Description: This command defines the instruction sequence to print a new line. A <carriage return> and

<linefeed> is appended to the end of the output.

PRINT_STRING Define instructions to print text string

PRINT_STRING=<string>

Default: empty string

Parameters: {string}

Example: PRINT STRING=<DEBUG "{string}">

Description: This command defines the instruction sequence to print text string. A <carriage return> and

<linefeed> is appended to the end of the output.

READ BYTE Define instructions to read 8-bit value

READ_BYTE=<string>

Default: empty string

Parameters: none

Example: READ BYTE=<{name} = fpu readByte();>

Description: This command defines the instruction sequence to use to read an 8-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

READ_DELAY Define instructions for read delay

READ_DELAY=<string>

Default: empty string

Parameters: none

Example: READ DELAY=<call fpu readDelay();>

Description: This command defines the instruction sequence to be used to wait for the read delay. A <carriage

return> and <linefeed> is appended to the end of the output.

READ_LONG Defines command to read 32-bit value

READ_LONG=<string>

Default: empty string
Parameters: none
Example: READ LONG=<{name} = fpu readLong();>

Micromega Corporation 69 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

Description: This command defines the instruction sequence to use to read a 32-bit value. A <carriage return>
and <linefeed> is appended to the end of the output.

READ_WORD Defines instructions to read 16-bit value

READ_WORD=<string>

Default: empty string

Parameters: none

Example: READ WORD=<{name} = fpu readWord();>

Description: This command defines the instruction sequence to use to read a 16-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

REGISTER_DEFINITION Define register definition
REGISTER_DEFINITION=<string>

Default: empty string

Parameters: {name}, {register}

Example: REGISTER DEFINITION=<#define {name} {register}>

Description: This command defines the instruction sequence used to define a register constant. A <carriage

return> and <linefeed> is appended to the end of the output.

RESERVED_PREFIX Define prefix for reserved words
RESERVED_PREFIX=<string>

Default: F_ (F and underscore)

Parameters: none

Example: RESERVED PREFIX=<FPU >

Description: This command defines the prefix to add to reserved words in order to make them unique.
RESERVED_WORD Define reserved word

RESERVED_WORD=<string>

Default: empty string
Parameters: none
Example: RESERVED WORD=<SIN>

Description: This command defines a reserved word. Multiple RESERVED_WORD commands can be used,
with each command specifying one reserved word.

Micromega Corporation 70 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

SEPARATOR Define separator character for WRITE command
SEPARATOR=<string>

Default: , (comma and space)

Parameters: none

Example: SEPARATOR=<, >

Description: This command sets the separator character used between items in write_command.
SOURCE_PREFIX Set indent for the start of a comment line

SOURCE_PREFIX=<string>

Default: ; (semi-colon)

Parameters: none

Example: SOURCE_PREFIX=< §-=>

Description: This command sets the prefix that’s added to source code lines that are copied as comments

included with the generated code. The correct string must be specified for a valid comment.

START_READ TRANSFER Define instructions for start of a read transfer

START_READ=<string>

Default: empty string

Parameters: none

Example: START READ=<CALL START READ();>

Description: This command defines the instruction sequence used to start a read transfer. Some

implementations will not require this command. A <carriage return> and <linefeed> is appended
to the end of the output.

START_WRITE_TRANSFER Define instructions for start of a write transfer

START_WRITE=<string>

Default: empty string

Parameters: none

Example: START WRITE=<CALL START WRITE();>

Description: This command defines the instruction sequence used to start a write transfer. Some

implementations will not require this command. A <carriage return> and <linefeed> character is
appended to the end of the output.

STOP_TRANSFER Define instructions for end of read or write transfer

STOP=<string>
Default: empty string
Parameters: none

Micromega Corporation 71 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

Example: STOP=<CALL STOP();>

Description: This command defines the instruction sequence used to end a read or write transfer. Some
implementations will not require this command. A <carriage return> and <linefeed> character is
appended to the end of the output.

STRING_HEX_FORMAT Define format for non-printable string characters
STRING_HEX_FORMAT=<string>

Default: empty string

Parameters: none

Example: STRING_HEX_ FORMAT=<\{byte}>

Description: This command defines the syntax for writing a non-printable character using write_command.
TAB_SPACING Set number of characters per tab

TAB_SPACING=<n>

Default: 4

Parameters: none

Example: TAB_SPACING=<8>

Description: This command sets the number of characters in a tab. The absolute value of n specifies the number

of characters. If n is positive, only spaces are used to move to the next tab position. If 7 is
negative, then horizontal tabs (0x09) and spaces are used to move to the next tab position.

TARGET_NAME Define the target name

TARGET_NAME=<target name>

Default: none

Parameters: none

Example: TARGET NAME=<C compiler>

Description: This command must be on the first line of the file in order for the file to be recognized as a target

description file. It defines the name that will appear in the target menu.

WAIT Define instructions to wait for ready status

WAIT=<string>

Default: empty string

Parameters: none

Example: WAIT=<call fpu wait();>

Description: This command defines the instruction sequence used to wait for the FPU ready status. A <carriage

return> and <linefeed> is appended to the end of the output.

Micromega Corporation 72 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

WORD_DEFINITION Define word variable definition

WORD_DEFINITION=<string>

Default: empty string

Parameters: {name}

Example: WORD_DEFINITION=<int {name};>

Description: This command defines the instruction sequence used to define a 16-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

WRITE Define instructions to write bytes

WRITE=<string>

Default: empty string

Parameters: {byte}

Example: WRITE=<call fpu write({byte});>

Description: This command defines the instruction sequence used to write bytes to the FPU, and is required for

all implementations. A <carriage return> and <linefeed> is appended to the end of the output.

WRITE_BYTE Define instructions to write 8-bit value

WRITE_BYTE=<string>

Default: empty string

Parameters: none

Example: WRITE BYTE=<call fpu write({byte});>

Description: This command defines the instruction sequence used to output an 8-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

WRITE_BYTE_FORMAT Define 8-bit value format for WRITE command

WRITE_BYTE_FORMAT=<string>

Default: empty string

Parameters: {byte}

Example: WRITE_BYTE_ FORMAT=<{byte}>

Description: This command defines the syntax for writing an 8-bit value using the WRITE command.
WRITE_LONG Define instructions to write 32-bit value

WRITE_LONG=<string>

Default: empty string
Parameters: none
Example: WRITE LONG=<call fpu writelong({long});>

Micromega Corporation 73 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

Description: This command defines the instruction sequence used to output a 32-bit value. A <carriage return>
and <linefeed> is appended to the end of the output.

WRITE_LONG_FORMAT Define 32-bit value format for WRITE command

WRITE_LONG=<string>

Default: empty string
Parameters: none
Examples: WRITE LONG=<{byte}<<24, {byte}<<16, {byte}<<8, {byte}>

WRITE_LONG=<{word}(1l), {word}(2)>
WRITE LONG=<{long}>

Description: This command defines the syntax for writing a 32-bit value using the WRITE command.

WRITE_WORD Define instructions to write 16-bit value

WRITE_WORD=<string>

Default: empty string

Parameters: none

Example: WRITE WORD=<call fpu writeWord{word});>

Description: This command defines the instruction sequence used to output a 16-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

WRITE_WORD_FORMAT Define 16-bit value format for WRITE command

WRITE_WORD=<string>

Default: empty string
Parameters: {byte}, {word}
Examples: WRITE WORD=<{word}\16>

WRITE WORD=<{byte}<<8, {byte}>

Description: This command defines the syntax for writing a 16-bit value using the WRITE command.
WRITE_STRING Define instructions to write string value
WRITE_STRING=<string>

Default: empty string

Parameters: none

Example: WRITE STRING=<call fpu writeString("{string}");>

Description: This command defines the instruction sequence used to output a zero-terminated string value. A

<carriage return> and <linefeed> is appended to the end of the output.

WRITE_STRING_FORMAT Define write string format for WRITE command

Micromega Corporation 74 uM-FPU V3 IDE User Manual

Reference Guide: Target Description File

WRITE_STRING=<string>

Default: empty string

Parameters: none

Example: WRITE STRING=<"{string}">

Description: This command defines the syntax for writing a a zero-terminated string using the WRITE
command.

Micromega Corporation 75 uM-FPU V3 IDE User Manual

	Introduction
	Main Features
	Compiling
	Debugging
	Programming Flash Memory

	Further Information
	Table of Contents
	Installing the uM-FPU V3 IDE Software
	Connecting to the uM-FPU V3 chip
	Connection Diagram

	Overview of uM-FPU V3 IDE User Interface
	Source Window
	Output Window
	Debug Window
	Functions Window
	Serial I/O Window

	Tutorial 1: Compiling FPU Code
	Compiling uM-FPU V3 code
	Starting the uM-FPU V3 IDE
	Entering a Simple Equation
	Defining Names
	Sample Project
	Calculating Radius
	Copying Code to your Main Program
	Running the Program
	Calculating Diameter, Circumference and Area
	Copy Revised Code to the Main Program
	Running the Revised Program
	Saving the Source File

	Tutorial 2: Debugging FPU Code
	Making the Connection
	Tracing Instructions
	Breakpoints
	Single Stepping

	Tutorial 3: Programming FPU Flash Memory
	Making the Connection
	Defining functions
	Calling Functions
	Modifying the Code for Functions
	Compile and Review the Functions
	Storing the Functions
	Running the Program

	Reference Guide: Menus and Dialogs
	File Menu
	Edit Menu
	Debug Menu
	Functions Menu
	Tools Menu
	Help Menu

	Reference Guide: Compiler
	Order of Evaluation
	Comments
	Symbol Names
	Register Data Types
	Pre-defined Register Names
	User-defined Register Names
	Decimal Constants
	Hexadecimal Constants
	Floating Point Constants
	Pre-defined Constants
	User-defined Constants
	String Constants
	Microcontroller Variables
	Math Operators
	Math Functions
	User-Defined Functions
	Function Prototypes
	Global Symbols vs Local Symbols
	Assembler Code
	Wait Code

	Reference Guide: Assembler
	Assembler Instructions
	Assembler Directives
	Symbol Definitions
	Branch and Return Instructions
	Condition Codes
	Labels
	Using Branch Instructions and Labels
	If Statement
	Repeat Statement
	For Statement

	String Arguments
	Table Instructions
	MOP Instruction

	Reference Guide: Debugger
	Making the Connection
	Debug Window
	Trace Buffer
	Breakpoints
	The Register Panel
	Error messages
	<data error>
	<trace suppressed>
	<trace limit xx>

	Reference Guide: Auto Step and Conditional Breakpoints
	Auto Step Conditions Dialog
	Break on Instruction
	Break on FCALL
	Break on Count
	Break on Register Change
	Break on Expression
	Break on String

	Reference Guide: Programming Flash Memory
	Function Window

	Reference Guide: Setting uM-FPU V3 Parameters
	Set Parameters Dialog
	Break on Reset
	Trace on Reset
	Use PIC Format (IEEE 754 is default)
	Idle Mode Power Saving Enable
	Sleep Mode Power Saving Enabled
	Interface Mode
	I2C Address
	Auto-Start Mode
	Restore Default Settings

	Reference Guide: Target Description File
	Syntax
	Tab Spacing
	Commands
	Reviewing the Sample File
	Reserved Words
	Target Description Commands

